Green spaces don't ensure biodiversity in urban areas

October 31, 2014

Planting trees and creating green space in cities is good for attracting species, but it may not be enough to ensure biodiversity in built environments, a University of Iowa study has found.

The researchers surveyed two types of tree in an urban area in Iowa, and recorded the abundance of two insects that interact with them. They found that while there were plenty of the trees, black cherry and black walnut, they didn't find a corresponding abundance of the insects, in this case fruit flies that feed on the walnuts and black cherries and a type of wasp that feeds on the flies.

"In cities, you might have more trees, but you don't necessarily have more insects associated with them," says Andrew Forbes, associate professor of biology and an author on the paper, published online in the journal PLOS ONE. "There's still this real impact on diversity that's mediated by the landscape. This study implies that cities decrease diversity in some sort of fundamental, intrinsic way."

Amanda Nelson, a graduate student in biology at the UI, led a team of a dozen UI undergraduates who surveyed 250 sites in Iowa City for black cherry and black walnut trees. At sites where the researchers found trees, they collected fruit and counted the fruit flies found in the walnuts and cherries. They also counted the parasitic wasps that feed on the flies at each site. Although the cherry and walnut trees were more common in urban sites, Nelson and her team found fewer flies and wasps in these locations than in agricultural or undeveloped sites.

The researchers believe that barriers found in urban landscapes, such as built structures and paved areas, may make it difficult, if not impossible, for the insects to reach other trees, mate with other populations and thus enrich the gene pool. Nelson is trying to determine which physical barriers have the greatest impact on the insects by currently comparing the DNA of flies across urban sites.

"We can model how they're moving across the landscape and then compare that to the characteristics of landscapes that we think might be impeding them," says Nelson, who earned undergraduate degrees in biology and environmental science at the UI and is the corresponding author on the paper.

While other studies have examined the density of a single insect species across a range of landscapes, no other study has examined insect interactions across such a broad area, says Forbes. Nelson and her team sampled tens of thousands of fruits and counted hundreds of thousands of insects during the survey, which lasted from 2011 to 2013.

"Planting a tree in the city is not sufficient to then have walnut flies and the wasps that attack those walnut flies," says Forbes, who advised Nelson on the project. "We think there's something about the city that changes those dynamics, those interactions between plants and flies and the insects that eat those flies."

Despite this, Nelson thinks that finding ways for insects and people to share developed space is still an important goal to pursue.

"The responses of the diversity of organisms that could potentially share these developed areas with us can be really idiosyncratic. To promote the full diversity, we really have a lot to learn," says Nelson, who's from Exira, Iowa. "That doesn't mean our efforts are wasted, but it definitely means that we need to continue trying to learn to do a better job and be thoughtful about it."
-end-
The UI's Center for Global and Regional Environmental Research funded the work.

University of Iowa

Related Diversity Articles from Brightsurf:

More plant diversity, less pesticides
Increasing plant diversity enhances the natural control of insect herbivory in grasslands.

Insect diversity boosted by combination of crop diversity and semi-natural habitats
To enhance the number of beneficial insect species in agricultural land, preserving semi-natural habitats and promoting crop diversity are both needed, according to new research published in the British Ecological Society's Journal of Applied of Ecology.

Ethnolinguistic diversity slows down urban growth
Where various ethnic groups live together, cities grow at a slower rate.

Protecting scientific diversity
The COVID-19 pandemic means that scientists face great challenges because they have to reorient, interrupt or even cancel research and teaching.

Cultural diversity in chimpanzees
Termite fishing by chimpanzees was thought to occur in only two forms with one or multiple tools, from either above-ground or underground termite nests.

Bursts of diversity in the gut microbiota
The diversity of bacteria in the human gut is an important biomarker of health, influences multiple diseases, such as obesity and inflammatory bowel diseases and affects various treatments.

Underestimated chemical diversity
An international team of researchers has conducted a global review of all registered industrial chemicals: some 350,000 different substances are produced and traded around the world -- well in excess of the 100,000 reached in previous estimates.

New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.

Biological diversity as a factor of production
Can the biodiversity of ecosystems be considered a factor of production?

Fungal diversity and its relationship to the future of forests
Stanford researchers predict that climate change will reduce the diversity of symbiotic fungi that help trees grow.

Read More: Diversity News and Diversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.