Nav: Home

Millions of loci from a thousand plant transcriptomes

October 31, 2016

Scientists face many constraints when embarking on new projects. Often the biggest constraint is a small budget. This is why a team of scientists led by researchers at the University of Florida recently worked to make one aspect of genetic research cheaper and easier. In two companion papers published in a recent issue of Applications in Plant Sciences, they have provided guidelines for research projects using microsatellites and a resource of over five million microsatellites for use in a wide variety of plant species.

Microsatellites are genetic markers that play an increasingly important role in plant genome analysis. Plant breeders can use them to test for the presence of desired genes when performing crosses. Geneticists can use them to uncover relationships between individuals and populations. Molecular biologists can use them to construct genome maps. Microsatellites have gained popularity because they can be easily detected by PCR, and are abundant and widely distributed throughout the genome.

"Genetic markers are a fantastic tool for quantifying biodiversity. We still have only named a small percentage of the species on the planet (let alone studied them in detail), and there is a lot more work to do to understand the diversity of life on our planet," explains Richard Hodel, a doctoral candidate in the Department of Biology at the University of Florida.

The researchers identified the microsatellites using sequence data from the One Thousand Plant Transcriptomes Project. Abbreviated as 1KP, the project has greatly contributed to the number of plant genomes available to the research community. The online database currently contains 1334 transcriptome samples from green plant species.

"We felt that there was an enormous resource just sitting out there--the 1KP project--that could be used to help the community of plant researchers," explains Hodel.

This paper also describes how available genetic data, like those provided by the 1KP project and other sequence archives, can be used for purposes beyond their original intent, like marker development.

"Often, an initial barrier to starting a project is securing funding to develop genetic markers, if none are available for the study system of interest. Our microsatellite resource will allow researchers to search for loci that are available for a wide range of species, for free."

In the companion paper, Hodel and his colleagues compared the utility of microsatellites with next-generation sequencing technologies and emerging technologies like genotyping by sequencing (GBS) and restriction site associated DNA sequencing (RAD-Seq). They found that microsatellites are more cost effective for lower-budget research projects, and for researchers with samples of lower-quality DNA. The review indicates that microsatellites can be more affordable than newer methods, especially if loci are already developed. The paper includes a budget in an appendix, to give a ballpark idea of how much a certain study might cost.

"We wrote this for anyone who is starting a research project using genetic markers. I suppose I always thought about myself when I was beginning my PhD and had to design a project. I tried to remember what advice I would want to hear when I was starting a dissertation project. We were not only considering students when writing this guide though--the goal was to give people practical guidance and to enable them to consider all of their options," says Hodel.
-end-
Hodel, Richard G. J., Matthew A. Gitzendanner, Charlotte C. Germain-Aubrey, Xiaoxian Liu, Andrew A. Crowl, Miao Sun, Jacob B. Landis, M. Claudia Segovia-Salcedo, Norman A. Douglas, Shichao Chen, Douglas E. Soltis, and Pamela S. Soltis. 2016. A new resource for the development of SSR markers: Millions of loci from a thousand plant transcriptomes. Applications in Plant Sciences 4(6): 1600024. doi:10.3732/apps.1600024

Hodel, Richard G. J., M. Claudia Segovia-Salcedo, Jacob B. Landis, Andrew A. Crowl, Miao Sun, Xiaoxian Liu, Matthew A. Gitzendanner, Norman A. Douglas, Charlotte C. Germain-Aubrey, Shichao Chen, Douglas E. Soltis, and Pamela S. Soltis. 2016. The report of my death was an exaggeration: A review for researchers using microsatellites in the 21st century. Applications in Plant Sciences 4(6): 1600025. doi:10.3732/apps.1600025

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America, a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. APPS is available as part of BioOne's Open Access collection.

For further information, please contact the APPS staff at apps@botany.org

Botanical Society of America

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".