Nav: Home

Clouds are impeding global warming... for now

October 31, 2016

Lawrence Livermore National Laboratory researchers have identified a mechanism that causes low clouds - and their influence on Earth's energy balance - to respond differently to global warming depending on their spatial pattern.

The results imply that studies relying solely on recent observed trends are likely to underestimate how much Earth will warm due to increased carbon dioxide. The research appears in the Oct. 31 edition of the journal, Nature Geosciences.

The research focused on clouds, which influence Earth's climate by reflecting incoming solar radiation and reducing outgoing thermal radiation. As the Earth's surface warms, the net radiative effect of clouds also changes, contributing a feedback to the climate system. If these cloud changes enhance the radiative cooling of the Earth, they act as a negative, dampening feedback on warming. Otherwise, they act as a positive, amplifying feedback on warming. The amount of global warming due to increased carbon dioxide is critically dependent on the sign and magnitude of the cloud feedback, making it an area of intense research.

The researchers showed that the strength of the cloud feedback simulated by a climate model exhibits large fluctuations depending on the time period. Despite having a positive cloud feedback in response to long-term projected global warming, the model exhibits a strong negative cloud feedback over the last 30 years. At the heart of this difference are low-level clouds in the tropics, which strongly cool the planet by reflecting solar radiation to space.

"With a combination of climate model simulations and satellite observations, we found that the trend of low-level cloud cover over the last three decades differs substantially from that under long-term global warming" said Chen Zhou, lead author of the paper.

"The key difference is the spatial pattern of global warming", said Mark Zelinka, LLNL climate scientists and co-author of the study. "Not every degree of global warming is created equal, in terms of its effect on low clouds."

In response to increased carbon dioxide, climate models predict a nearly uniform warming of the planet that favors reductions in highly reflective low clouds and a positive feedback. In contrast, over the last 30 years, tropical surface temperatures have increased in regions where air ascends and decreased where air descends. "This particular pattern of warming is nearly optimal for enhancing low cloud coverage because it increases low-level atmospheric stability that keeps the lower atmosphere moist and cloudy", said Stephen Klein, the third co-author.

"Most satellite data starts around 1980, so linear trends over the last three decades are often used to make inferences about long-term global warming and to estimate climate sensitivity," said LLNL's Chen Zhou, lead author of the study. "Our results indicate that cloud feedback and climate sensitivity calculated from recently observed trends may be underestimated, since the warming pattern during this period is so unique."

Global temperature has gradually increased over the instrumental record due to increased greenhouse gas concentrations. But superimposed on this warming are large temperature fluctuations due to natural internal variability of the climate system, as well as influences from volcanic eruptions, aerosol pollution and solar variability. Whereas warming due to CO2 tends to be relatively spatially uniform, surface temperature trends due to internal climate variability and aerosol pollution are highly non-uniform, with trends on one side of an ocean basin often opposing those on the other. Trends computed over short time periods are often strongly influenced by factors other than CO2 and can be highly misleading indicators of what to expect under CO2-forced global warming.

The team emphasized that clouds are particularly sensitive to subtle differences in surface warming patterns, and researchers must carefully account for such pattern effects when making inferences about cloud feedback and climate sensitivity from observations over short time periods.
-end-
The work was funded by the Regional and Global Climate Modeling Program of the Office of Science at the U. S. Department of Energy (DOE) under the project "Identifying Robust Cloud Feedbacks in Observations and Models."

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

DOE/Lawrence Livermore National Laboratory

Related Global Warming Articles:

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.
Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.
Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.
Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.
Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.
Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.
Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.
Global warming: More insects, eating more crops
Rising global temperatures are expected to significantly increase crop losses from insects, especially in temperate regions, a new study finds.
Global fisheries could still become more profitable despite global warming
Global commercial fish stocks could provide more food and profits in the future, despite warming seas, if adaptive management practices are implemented.
Global warming may be twice what climate models predict
Future global warming may eventually be twice as warm as projected by climate models under business-as-usual scenarios and even if the world meets the 2°C target sea levels may rise six metres or more, according to an international team of researchers from 17 countries.
More Global Warming News and Global Warming Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab