Nav: Home

How the fruit fly's brain knows where the fruit fly's going

October 31, 2016

When we turn our head to one side, the visual field "turns" the other way. When we are on a train, the landscape slides by us. However, we know that we are the ones moving, while the world remains in place. How does the brain avoid being fooled by apparent motion?

A team of neuroscientists from the Champalimaud Foundation in Lisbon, Portugal, discovered in the fruit fly's brain a neural circuit that creates a faithful internal representation of the direction and velocity of the insect's locomotion, allowing it to know where it is going at any given time. Their results, which could also be valid for other animals, including humans, have been published in the journal Nature Neuroscience.

In fact, we take this capacity - being able to perceive that our movements are really our own - so much for granted that we end up underestimating the complexity and the fragility of the underlying biological mechanisms. But when we lose this ability, as can be the case in certain mental disorders and due to brain injury, we are no longer able to interact with the world, says Argentinian neuroscientist Eugenia Chiappe. "The precise sense of self-movement is an important part of our sense of self. No sensory experience is possible without movement".

Eugenia Chiappe, who led the new study, wants to understand how, when we go from one place to another, our brain manages to differentiate the apparent motion of the objects around us, generated by our own movements, from an actual physical motion of those objects (as would happen in an earthquake, to give an extreme example).

The team studied a specific type of neurons in the fruit-fly: horizontal system cells, or HS cells, located in a region of the fly's brain called the lobula plate. "We know that HS cells are part of a monitoring system that tells the fly's brain that it was the fly that moved", says Eugenia Chiappe.

This type of cells, generically called "optic-flow processing" cells, also exist in the primate brain. And these neurons receive not only visual information, but also non-visual information related to eye and head movements of the animal. So it would be expected that they also receive non-visual information related to walking movements.

"Until now, this had not been demonstrated", says Eugenia Chiappe, "because it has been very difficult to artificially create the illusion of walking in a monkey." But with the fruit fly, it is much easier to do locomotion experiments: just place the fly on a suspended ball that rolls when the fly walks, and while it is walking you can directly record the activity of HS cells.

To prove the contribution of non-visual signals to the HS cells' activity, the scientists simply turned off the lights. "What we now showed in the fruit fly is that, even in the dark, HS cells continue monitoring body movements through non-visual signals", says Eugenia Chiappe. The authors also showed that these neurons integrate visual and non-visual signals when the lights are back on - that is, when both kinds of signals coexist.

But does this enhance the fly's perception of its own movements?

The answer is yes. "We showed that when the fly can sense self-generated visual feedback, the two kinds of signals, the visual and non-visual, cooperate", says Eugenia Chiappe. More specifically, this cooperation leads to an increase of the activity of HS cells when the visual feedback is expected from the direction of walking. In other words, thanks to the integration of visual and non-visual signals, HS cells can monitor and control the fly's course more faithfully.

To confirm the existence of this visual/non-visual signal cooperation, the team performed a third experiment, where the outside world "reacted" in a totally unnatural way to the fly's walking motion: when the fly turned in a certain direction, the visual field now turned in the same direction!

Under this condition, the HS cells completely lost their sense of orientation, so to speak. "The directional selectivity of the HS cells decreased and they became unable to distinguish one direction from another, failing to tell the fly's brain in which direction the fly was turning", says Eugenia Chiappe.

According to her, a reevaluation of the classical vision of HS cell function is now needed. Up to know, it was thought that in the fruit fly, these cells specifically controlled the flight course.

But one thing remained poorly understood: to a fly which is in the air, the motion of far-away objects appears slower than that of closer objects. In these conditions, how can the fly have an accurate notion of its flight speed, something which is crucial to correctly calculate the distance to its target and land smoothly on it?

Here, another finding the scientists made during the experiments in the dark becomes relevant: the fact that the activity of the HS cells was strongly correlated with the velocity of the fly's body, both when it walks in a straight line and when it turns.

This means, according to Eugenia Chiappe, that "based on the activity of its HS cells, the fly's brain computes its actual physical velocity, both linear and angular". In other words, "it is the combination of visual and non-visual signals that enables the calibration of the visual information, and thus a more faithful representation the fly's locomotive movements", she adds.

In light of these results, HS cells become excellent candidates for the role of self-movement detectors that allow the fly's brain to know, at every moment, where it is headed and to control its course.

"The next step of this research will be to determine what the non-visual signals involved are", says Eugenia Chiappe. These may include our so-called "sixth-sense", proprioception, which enables us to know, at any given instant, the position in space of the different parts of our body. "Moreover, we also want to understand how these signals combine among themselves in order to supply the relevant information to the brain", says Eugenia Chiappe.

"It is important to understand how motor and visual processes interact with the perception of our own movements. This coordination is at the root of many of our daily activities, and namely of our basic cognitive capabilities", she concludes.
Link to the paper:

Title of the paper: A faithful internal representation of walking movements in the Drosophila visual system

Authors: Terufumi Fujiwara, Tomás L. Cruz, James P. Bohnslav and M. Eugenia Chiappe

Eugenia Chiappe is the principal investigator of the Sensorimotor Integration Lab at the Champalimaud Foundation.


Maria João Soares
+351 914237487

Champalimaud Foundation

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...