Nav: Home

Cell extrusion mechanisms

October 31, 2016

An international collaboration between scientists from the Mechanobiology Institute (MBI) at the National University of Singapore (NUS) and the Institut Jacques Monod and Université Paris Diderot, France, has revealed how epithelial cell extrusion is regulated by cell density. The study was published in the scientific journal Current Biology on 5 October 2016.

How does cell density affect extrusion?

The external and internal surfaces of the body are covered by a layer of cells known as epithelial cell sheets. The classic example of an epithelial cell sheet is skin, but epithelial layers also line internal cavities such as blood vessels, the stomach, and the mouth. The primary role of these cell sheets is to provide a protective barrier against physical damage and infection. In order to perform these functions, the integrity of the epithelial cell sheet must be maintained by balancing cell renewal and removal. For example, the layer of cells lining the intestine is renewed every five days. Deteriorating, damaged, or unnecessary cells are targeted for elimination by apoptosis - the process of programmed cell death - allowing them to be eliminated without causing damage to the neighboring healthy cells, as would occur during inflammation.

Removal of these apoptotic cells from the epithelial cell sheet to maintain an intact barrier layer takes place by the process of cell extrusion. To date, studies have shown that epithelial cell extrusion occurs via formation of a contractile ring made up of protein based cables and motors in the cells surrounding the cell targeted for extrusion. The contractile ring tightens around the base of the extruding cell, pushing it out of the epithelial sheet and bringing the surrounding cells together. Although this 'purse-string' mechanism of contraction is commonly seen in epithelial cell sheets, many of these observations have been based on the assumption that the epithelial layer is a collection of individual cells. However, in reality, these multi-cellular sheets are highly complex structures, with large variations in cell dynamics and cell density.

In order to account for this level of complexity, an interdisciplinary team of biologists, engineers, and biophysicists was assembled by Professor Benoit Ladoux from MBI and Institut Jacques Monod, and Assistant Professor Yusuke Toyama from MBI. The scientists used microfabrication to create circular micro-patterns surfaces that enabled control of the growth and density of epithelial cell sheets. By observing cell extrusion events in cell sheets grown on these patterns, with time-lapse and traction-force microscopy, they discovered that cell density led to two distinct modes of cell extrusion. At a low cell density, the cells in a tissue are dynamic and mobile. As these cells are moving freely, occasionally cell density becomes high in a small patch in the tissue. Cells at this dense region undergo apoptosis, and the cells surrounding the apoptotic cell selected for extrusion collectively crawl towards the targeted cell, and extend large, flat protrusions called lamellipodia underneath it. This action levers the apoptotic cell out of the sheet, causing its extrusion. However, at high density, cells are too tightly packed to move, preventing collective cell migration and lamellipodia-based extrusion. Under these conditions, the cells surrounding the apoptotic cell form a contractile ring, and use purse-string contraction to squeeze out and extrude the cell.

This study revealed, for the first time, that two distinct mechanisms exist to expel apoptotic cells from epithelial cell sheets. Selection between cell extrusion mechanisms is defined by cell density - cell crawling and lamellipodia extension is the predominant mechanism at low density, but purse-string contraction is favoured at high density. The existence of these complementary mechanisms could be important for ensuring the removal of unnecessary cells (e.g. apoptotic cells) in different circumstances to maintain the integrity of the epithelial cell sheet.
-end-


National University of Singapore

Related Apoptotic Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New function discovered for ADAR1 in protecting stressed cells from apoptotic death
The RNA editing protein ADAR1 was first discovered several decades ago.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.
Lab-grown nerve cells make heart cells throb
Researchers at Johns Hopkins report that a type of lab-grown human nerve cells can partner with heart muscle cells to stimulate contractions.
Researchers convert cirrhosis-causing cells to healthy liver cells in mice
A team of researchers led by UC San Francisco scientists has demonstrated in mice that it is possible to generate healthy new liver cells within the organ itself, making engraftment unnecessary.
Blocking apoptotic response could preserve fertility in women receiving cancer treatments
Female cancer patients of reproductive age could preserve their fertility during radiation and chemotherapy through treatments that target the DNA damage response in oocytes (the cells that develop into eggs), an approach that works in animal models.
Scientists turn skin cells into heart cells and brain cells using drugs
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Gene family turns cancer cells into aggressive stem cells that keep growing
An examination of 130 gene expression studies in 10 solid cancers has found that when any of four related genes is overexpressed, patients have much worse outcomes, including reduced survival.

Related Apoptotic Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".