Nav: Home

Key protein implicated in negative side effects of senescence

October 31, 2016

PHILADELPHIA -- (Oct. 31, 2016)-- Cellular senescence is a state in which normal healthy cells do not have the ability to divide. Senescence can occur when cancer-causing genes are activated in normal cells or when chemotherapy is used on cancer cells. Thus, senescence induces a mechanism that halts the growth of rapidly dividing cells. Once thought to only be beneficial to halt cancer progression, work from the The Wistar Institute has shown that during senescence there is an increase in secreted factors called cytokines and chemokines (small proteins important in immune responses) that may have detrimental, pro-tumorigenic side effects.

Researchers at The Wistar Institute have identified a protein that plays a critical role in the expression of cytokines and chemokines, and that decreasing this protein suppresses the expression of these secreted factors. This suggests that there may be ways of promoting the positive effects of senescence while suppressing its negative effects. The findings were published online by the Journal of Cell Biology.

Rugang Zhang, Ph.D., professor and co-program leader of the Gene Expression and Regulation program at Wistar, and colleagues focused on chromatin, a cellular structure responsible for holding the DNA in our cells together. During senescence, some of the chromatin is reorganized into senescence-associated heterochromatin foci (SAHF). When this happens, genes that are responsible for promoting proliferation are silenced. However, the expression of cytokine and chemokine genes -- known collectively as the senescence-associated secretory phenotype (SASP) -- is increased.

"When senescence happens, you have two closely linked phenomena occurring, yet one of these helps to halt tumor progression while the other causes an increase in potentially harmful inflammatory cytokines and chemokines," said Zhang, who is lead author of the study. "We pinpointed the architecture of chromatin and the proteins that influence chromatin organization as the proper place to start to try and solve this paradox."

The scientists looked at a set of proteins known as high mobility group proteins, which are responsible for altering chromatin architecture in order to regulate gene transcription. One such protein called high mobility group box 2 (HMGB2) binds to DNA to increase chromatin's accessibility to transcription factors. They showed that HMGB2 promotes SASP gene expression by preventing the spreading of heterochromatin and therefore preventing SAHF from silencing SASP genes. When the researchers silenced HMGB2, SASP genes were successfully silenced by SAHF, suggesting that the detrimental effects of senescence might be negated by inhibiting HMGB2.

"Understanding senescence is critical for understanding how tumor growth can be successfully suppressed," said Katherine Aird, Ph.D., a staff scientist in the Zhang lab and first author of the study. "With the information from this study, we may be able to increase the effectiveness of chemotherapeutic agents that are able to induce senescence by silencing HMGB2 and decreasing the expression of unwanted secreted factors."
-end-
The authors would like to thank The Wistar Institute's Genomics, Bioinformatics, and Molecular Screening Facilities. This work was supported by the National Institutes of Health/National Cancer Institute grants R01CA160331, R01CA163377, R01CA202919, K99CA194309, and K99CA194318, an Ovarian Cancer Research Fund Alliance Program Project Development Grant, The Jayne Koskinas & Ted Giovanis Breast Cancer Research Consortium at Wistar, the subsidy of the Russian Government to support the Program of competitive growth of Kazan Federal University, and the W.W. Smith Charitable Trust grant C1501. Support of Core Facilities used in this study was provided by Cancer Center Support Grant (CCSG) CA010815 to The Wistar Institute.

Co-authors of this study from The Wistar Institute include: Osamu Iwasaki, Andrew Kossenkov, Hideki Tanizawa, Nail Fatkhutdinov, Benjamin Bitler, Linh Le, Gretchen Alicea, and Ken-ichi Noma. Additional co-authors are: Ting Yang and F. Bradley Johnson, both from the University of Pennsylvania Perelman School of Medicine.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

The Wistar Institute

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".