Nav: Home

Potential target identified for preventing long-term effects of traumatic brain injury

October 31, 2016

More than 200,000 U.S. soldiers serving in the Middle East have experienced a blast-related traumatic brain injury, making it a common health problem and concern for that population.

Traumatic brain injury (TBI) can have various harmful long-term neurological effects, including problems with vision, coordination, memory, mood, and thinking. According to the Centers for Disease Control and Prevention, TBI from a head injury is a leading cause of death and disability in the United States, and close to 5 million Americans--soldiers and non-soldiers alike--are currently living with a TBI-related disability. Current therapy for these patients involves supportive care and rehabilitation, but no treatments are available that can prevent the development of chronic neurological symptoms.

Researchers from the University of Iowa believe they may have identified a potential approach for preventing the development of neurological problems associated with TBI. Their research in mice suggests that protecting axons--the fiber-like projections that connect brain cells--prevents the long-term neuropsychiatric problems caused by blast-related traumatic brain injury.

In a recent study, the UI team, led by Andrew Pieper, MD, PhD, professor of psychiatry at the UI Carver College of Medicine, investigated whether early damage to axons--an event that is strongly associated with many forms of brain injury, including blast-related TBI--is simply a consequence of the injury or whether it is a driving cause of the subsequent neurological and psychiatric symptoms.

To answer that question, the researchers used mice with a genetic mutation that protects axons from some forms of damage. The mutation works by maintaining normal levels of an important energy metabolite known as nicotinamide adenine dinucleotide (NAD) in brain cells after injury.

When mice with the mutation experienced blast-mediated TBI, their axons were protected from damage, and they did not develop the vision problems or the thinking and movement difficulties that were seen when mice without the mutation experienced blast-related TBI. The findings were published Oct. 11 in the online journal eNeuro.

"Our work strongly suggests that early axonal injury appears to be a critical driver of neurobehavioral complications after blast-TBI," says Pieper, who also is a professor of neurology, radiation oncology, and a physician with the Iowa City Veterans Affairs Health Care System.

"Therefore, future therapeutic strategies targeted specifically at protecting or augmenting the health of axons may provide a uniquely beneficial approach for preventing these patients from developing neurologic symptoms after blast exposure."

In confirming the critical relationship between axon degeneration and development of subsequent neurological complication, the new study builds on previous work from Pieper's lab. The researchers also have discovered a series of neuroprotective compounds that appear to help axons survive the kind of early damage seen in TBI. These compounds activate a molecular pathway that preserves neuronal levels of NAD, the energy metabolite that has been shown to be critical to the health of axons. Pieper's team previously demonstrated that these neuroprotective compounds block axonal degeneration and protect mice from harmful neurological effects of blast-TBI, even when the compound are given 24 to 36 hours after the blast injury.
-end-
In addition to Pieper, the research team included Terry Yin, Jaymie Voorhees, Rachel Genova, Kevin Davis, Ashley Madison, Jeremiah Britt, Coral Cinton, Latisha McDaniel, and Matthew Harper. Pieper also is a member of the Pappajohn Biomedical Institute at the UI.

The research was supported by funds from Calico LLC (California Life Company) and the Mary Alice Smith Fund for Neuropsychiatry Research.

University of Iowa Health Care

Related Traumatic Brain Injury Articles:

New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
Studies uncover long-term effects of traumatic brain injury
Doctors are beginning to get answers to the question that every parent whose child has had a traumatic brain injury wants to know: What will my child be like 10 years from now?
People with traumatic brain injury approximately 2.5 times more likely to be incarcerated
People who have suffered a traumatic brain injury are approximately 2.5 times more likely to be incarcerated in a federal correctional facility in Canada than people who have not, a new study has found.
Traumatic brain injury associated with long-term psychosocial outcomes
Traumatic brain injury (TBI) during youth is associated with elevated risks of impaired adult functioning, according to a longitudinal study published in PLOS Medicine.
Curbing the life-long effects of traumatic brain injury
A fall down the stairs, a car crash, a sports injury or an explosive blast can all cause traumatic brain injury (TBI).
Is traumatic brain injury associated with late-life neurodegenerative conditions?
Traumatic brain injury (TBI) with loss of consciousness was not associated with late-life mild cognitive impairment, Alzheimer disease or dementia but it appeared to be associated with increased risk for other neurodegenerative and neuropathologic findings, according to a new article published online by JAMA Neurology.
Link found between traumatic brain injury and Parkinson's, but not Alzheimer's
Traumatic brain injury (TBI) with a loss of consciousness (LOC) may be associated with later development of Parkinson's disease but not Alzheimer's disease or incident dementia.
Novel peptide protects cognitive function after mild traumatic brain injury
Scientists at the Hebrew University of Jerusalem have shown that a single dose of a new molecule can protect the brain from inflammation and cognitive impairments following mild traumatic brain injury.
Allen Institute releases powerful new data on the aging brain and traumatic brain injury
The Allen Institute for Brain Science has announced major updates to its online resources available at brain-map.org, including a new resource on Aging, Dementia and Traumatic Brain Injury in collaboration with UW Medicine researchers at the University of Washington, and Group Health.
Developing tools to screen traumatic brain injury therapies
University of Houston biologist Amy Sater will be developing a model for studying traumatic brain injury, thanks to a two-year, $386,000 grant from the Robert J.

Related Traumatic Brain Injury Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".