Nav: Home

Scientists show how mutation causes incurable premature aging disease

October 31, 2016

ANN ARBOR--Scientists have demonstrated how a mutation in a specific protein in stem cells causes an incurable premature aging disease called dyskeratosis congenita, and were able to introduce the mutation into cultured human cells using gene editing technology.

The study findings provide a drug target for the disease, said lead study author Jayakrishnan Nandakumar, assistant professor of molecular, cellular and developmental biology at the University of Michigan.

The mutation compromises the function of an enzyme known as telomerase, which fuels stem cell division, he said. Stem cells must divide to repair old tissue.

This mutation, which occurs in the telomere protein TPP1, causes stem cells to slow or stop dividing in people with this rare, incurable disease. This can cause tissue breakdown, premature aging, bone marrow failure, cancer and even death.

Nandakumar and his U-M colleagues are believed to be the first to use genome editing technology called CRISPR/CAS9 to introduce a dyskeratosis congenita mutation into human cells.

This gene editing technology is often described as a pair of molecular scissors, because it cuts DNA in precise locations to allow for additions, deletions and replacements of DNA near the cut. The acronyms stand for Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (CAS9).

The patient relevant to the study had one mutant gene, but also one normal TPP1 gene, yet still suffered from the disease. Nandakumar's group wanted to know if introducing one copy of the mutant TPP1 gene into cultured human cells using the CRISPR/CAS9 gene editing technology would compromise telomerase function in those cells, too.

It did, which meant that the mutation caused the disease.

"We envision that correcting the mutation in the stem cells of the patient will reverse the cellular symptoms of the disease, if and when such technology becomes available," Nandakumar said.

Understanding how the TPP1 mutation works also has implications for treating cancer patients, he said. This is because while the TPP1 mutation inhibits stem cell division in people with dyskeratosis congenita, normal TPP1 fuels cell division in people with cancer.
-end-
The study, "Structural and functional consequences of a disease mutation in the telomere protein TPP1," appears online in the Proceedings of the National Academy of Sciences the week of Oct. 31.

Co-authors from Nandakumar's lab include: Kamlesh Bisht, Eric Smith and Valerie Tesmer.

Study available via EurekAlert
Jayakrishnan Nandakumar
MCDB

University of Michigan

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".