Nav: Home

Balancing time & space in the brain: New model holds promise for predicting brain dynamics

October 31, 2016

PITTSBURGH--For as long as scientists have been listening in on the activity of the brain, they have been trying to understand the source of its noisy, apparently random, activity. In the past 20 years, "balanced network theory" has emerged to explain this apparent randomness through a balance of excitation and inhibition in recurrently coupled networks of neurons. A team of scientists has extended the balanced model to provide deep and testable predictions linking brain circuits to brain activity.

Lead investigators at the University of Pittsburgh say the new model accurately explains experimental findings about the highly variable responses of neurons in the brains of living animals. On Oct. 31, their paper, "The spatial structure of correlated neuronal variability," was published online by the journal Nature Neuroscience.

The new model provides a much richer understanding of how activity is coordinated between neurons in neural circuits. The model could be used in the future to discover neural "signatures" that predict brain activity associated with learning or disease, say the investigators.

"Normally, brain activity appears highly random and variable most of the time, which looks like a weird way to compute," said Brent Doiron, associate professor of mathematics at Pitt, senior author on the paper, and a member of the University of Pittsburgh Brain Institute (UPBI). "To understand the mechanics of neural computation, you need to know how the dynamics of a neuronal network depends on the network's architecture, and this latest research brings us significantly closer to achieving this goal."

Earlier versions of the balanced network theory captured how the timing and frequency of inputs--excitatory and inhibitory--shaped the emergence of variability in neural behavior, but these models used shortcuts that were biologically unrealistic, according to Doiron.

"The original balanced model ignored the spatial dependence of wiring in the brain, but it has long been known that neuron pairs that are near one another have a higher likelihood of connecting than pairs that are separated by larger distances. Earlier models produced unrealistic behavior--either completely random activity that was unlike the brain or completely synchronized neural behavior, such as you would see in a deep seizure. You could produce nothing in between."

In the context of this balance, neurons are in a constant state of tension. According to co-author Matthew Smith, assistant professor of ophthalmology at Pitt and a member of UPBI, "It's like balancing on one foot on your toes. If there are small overcorrections, the result is big fluctuations in neural firing, or communication."

The new model accounts for temporal and spatial characteristics of neural networks and the correlations in the activity between neurons--whether firing in one neuron is correlated with firing in another. The model is such a substantial improvement that the scientists could use it to predict the behavior of living neurons examined in the area of the brain that processes the visual world.

After developing the model, the scientists examined data from the living visual cortex and found that their model accurately predicted the behavior of neurons based on how far apart they were. The activity of nearby neuron pairs was strongly correlated. At an intermediate distance, pairs of neurons were anticorrelated (When one responded more, the other responded less.), and at greater distances still they were independent.

"This model will help us to better understand how the brain computes information because it's a big step forward in describing how network structure determines network variability," said Doiron. "Any serious theory of brain computation must take into account the noise in the code. A shift in neuronal variability accompanies important cognitive functions, such as attention and learning, as well as being a signature of devastating pathologies like Parkinson's disease and epilepsy."

While the scientists examined the visual cortex, they believe their model could be used to predict activity in other parts of the brain, such as areas that process auditory or olfactory cues, for example. And they believe that the model generalizes to the brains of all mammals. In fact, the team found that a neural signature predicted by their model appeared in the visual cortex of living mice studied by another team of investigators.

"A hallmark of the computational approach that Doiron and Smith are taking is that its goal is to infer general principles of brain function that can be broadly applied to many scenarios. Remarkably, we still don't have things like the laws of gravity for understanding the brain, but this is an important step for providing good theories in neuroscience that will allow us to make sense of the explosion of new experimental data that can now be collected," said Nathan Urban, associate director of UPBI.

-end-

In addition to Doiron and Smith, Jonathan Rubin, professor of mathematics at Pitt; Robert Rosenbaum, a former postdoctoral scholar at Pitt and now an assistant professor at the University of Notre Dame; and Adam Kohn from the Albert Einstein College of Medicine contributed to this work.

The research was funded by National Science Foundation grants awarded as part of the federal BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative. Additional support was provided by the National Eye Institute, Research to Prevent Blindness, the Eye and Ear Foundation of Pittsburgh, and the Simons Foundation.

With more than 150 faculty members, the University of Pittsburgh Brain Institute seeks to unlock the mysteries of normal and abnormal brain function and then translate discoveries into new approaches for overcoming brain disorders. The institute employs multiple levels of analysis, from molecular and cellular approaches to whole systems and behavioral analysis, and incorporates research across disciplines including neuroscience, bioengineering, computer science, and robotics.

University of Pittsburgh

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Radiolab Presents: Anna in Somalia
This week, we are presenting a story from NPR foreign correspondent Gregory Warner and his new globe-trotting podcast Rough Translation. Mohammed was having the best six months of his life - working a job he loved, making mixtapes for his sweetheart - when the communist Somali regime perp-walked him out of his own home, and sentenced him to a lifetime of solitary confinement.  With only concrete walls and cockroaches to keep him company, Mohammed felt miserable, alone, despondent.  But then one day, eight months into his sentence, he heard a whisper, a whisper that would open up a portal to - of all places and times - 19th century Russia, and that would teach him how to live and love again. 
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.