Nav: Home

Penn Dental team tweaks DNA to improve plant-based medicines

October 31, 2016

Henry Daniell, a professor in the departments of Biochemistry and Pathology in the University of Pennsylvania's School of Dental Medicine, has found great success in using genetic engineering to coax lettuce and tobacco plants to produce foreign proteins in their leaves, be they from a polio virus to make vaccines, a wormwood plant to synthesize malaria drugs, or the human clotting factor to make a hemophilia treatment.

Yet over the years, he noticed that while his plant-based drug production platform could efficiently express bacterial genes as well as short human genes, it had trouble expressing viral genes and longer human genes. One explanation for this, Daniell and colleagues hypothesized, could have to do with differences among plants, animals, bacteria, and viruses in how they use the DNA code to make proteins.

"Plant chloroplasts are bacteria-like, or prokaryotic, and humans are eukaryotic," says Daniell. "So that's the challenge: How can we make a chloroplast recognize a human gene and transform it like its own to make a protein?"

Proteins are made up of building blocks called amino acids, which are themselves produced according to three-letter strings of DNA called codons. There are 64 codons but only 20 amino acids, because multiple codons encode the same amino acid. But it turns out that different organisms have different preferences for which codon they use to produce a given amino acid.

It was these species-specific preferences that Daniell's team sought to exploit in a recent paper published in the journal Plant Physiology. The researchers analyzed the genomes of 133 plant species to see which codons were used most frequently to code for particular amino acids. Using their results from this analysis, they designed a software program that converts any given DNA sequence into the sequence that would be preferred by either lettuce or tobacco plants. This software is now freely available for other researchers to use.

Next the team tested whether this process of "codon optimization" resulted in increased levels of protein expression, using a head-to-head comparison of the optimized gene--the output from the software--versus the native gene in two different proteins, one used in a hemophilia therapy and one used in a polio vaccine.

Working with Novo Nordisk, the company that is funding Daniell's hemophilia research, the research team developed a technique involving a probe to the protein of interest to arrive at an exact quantity in the finished batches.

The findings revealed the significant impact of codon optimization: The process led to expression levels of hemophilia clotting factor five to six times higher than the native protein, and to levels of the poliovirus protein roughly 26 times higher than the native sequence.

"These two advances--improving the expression levels of protein and quantifying an exact dose--were key questions the [U.S. Food and Drug Administration] has had about our work," Daniell says. "Now that we've addressed these issues, we're closer than ever to getting these therapies to the clinic."
-end-


University of Pennsylvania

Related Amino Acids Articles:

A unique amino acid for brain cancer therapy
Researchers discover potential application of amino acid taurine in photodynamic therapy for brain cancer.
Nickel: A greener route to fatty acids
Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids.
Amino acids in diet could be key to starving cancer
Cutting out certain amino acids - the building blocks of proteins -- from the diet of mice slows tumor growth and prolongs survival, according to new research published in Nature.
How to brew high-value fatty acids with brewer's yeast
Researchers at Goethe University Frankfurt have succeeded in producing fatty acids in large quantities from sugar or waste containing sugar with the help of yeasts.
Diverse natural fatty acids follow 'Golden Mean'
Bioinformatics scientists at Friedrich Schiller University in Jena (Germany) have discovered that the number of theoretically possible fatty acids with the same chain length but different structures can be determined with the aid of the famous Fibonacci sequence.
Simple fats and amino acids to explain how life began
Life is a process that originated 3.5 billion years ago.
Newly revealed amino acid function could be used to boost antioxidant levels
A Japanese research team has become the first in the world to discover that 2-aminobutyric acid is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested.
An amino acid controls plants' breath
IBS plant scientists demonstrate that the amino acid L-methionine activates a calcium-channel regulating the opening and closing of tiny plant pores.
Genetic differences in amino acid metabolism are linked to a higher risk of diabetes
A study published today in the journal PLOS Medicine has identified the five genetic variants associated with higher levels of the branched-chain amino acids isoleucine, leucine and valine.
Withholding amino acid depletes blood stem cells, Stanford researchers say
A new study shows that a diet deficient in valine effectively depleted the blood stem cells in mice and made it possible to perform a blood stem cell transplantation on them.

Related Amino Acids Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".