Reproducing pediatric kidney disease from human iPS cells

October 31, 2018

Scientists in Japan have found a 'skeleton key' for congenital kidney disease research. Using iPS cells generated from the skin cells of a patient with a nephrin mutation, Kumamoto University scientists have successfully developed kidney tissue that exhibits the early stages of congenital kidney disease. The protein nephrin is a constituent of the kidney filtration membrane and abnormalities of this protein are commonly found in other types of kidney diseases. The results of this work are expected to unlock several doors in future kidney disease research.

The kidneys are organs that filter out and discharge waste products from the blood. During this process, proteins in the blood should not leak into the urine. The membrane responsible for this filtration is part of the glomerular podocyte and nephrin is its main constituent. If there is a genetic mutation affecting the nephrin, a large amount of protein in the blood can leak into the urine resulting in congenital nephrotic syndrome. The treatment of this syndrome is radical and difficult, and the absence of a technique to artificially reproduce a mutated filtration membrane has been a bottleneck in research progress.

In 2014, this Kumamoto University research group succeeded in the extremely difficult task of producing artificial kidney tissue in vitro from human iPS cells--a world first. And in 2016, they found that glomerular podocytes derived from iPS cells strongly express nephrin, that the human glomeruli readily connects with mouse blood vessels, and that induced podocytes continue to mature after transplantation into mice. With this knowledge, they applied their techniques to iPS cells derived from a single patient for their most recent project.

First, they established iPS cells from the skin cells of a patient with congenital nephrotic syndrome having a single nephrin mutation. When they induced kidney tissue from these iPS cells in vitro, they found that nephrin, which should exist on the surface of the glomerular podocyte, remained inside the cell, and that almost no filtration membrane precursor could develop. When podocyte maturation was performed by transplantation into mice, nephrin, which typically moves toward the blood vessel side of normal podocytes again remained inside the patient-derived cells. In other words, the initial pathology of this congenital kidney disease was reproduced by the iPS cells derived from the diseased patient.

Furthermore, when the nephrin mutation in patient-derived iPS cells were repaired and then induced into kidney tissue, the abnormalities were normalized. Put simply, the researchers found that this single mutation is the cause of the disease, and showed that it could possibly be treated by repairing the mutation.

"Because we can now reproduce the pathology of congenital nephrotic syndrome, it should be much easier to explore therapeutic drugs using this podocyte," said project leader Professor Ryuichi Nishinakamura. "Even when kidney disease develops in adults, it often begins with abnormal quantities of protein in the urine. It is believed that this is often caused by trouble in the nephrin protein of the filtration membrane. If a medication is discovered that controls nephrin protein, there is a strong possibility that it will be highly effective for kidney disease. What we have achieved here is a big step towards the development of drugs that act on podocytes and reduce proteinuria."

This research result was posted online in Stem Cell Reports on 30th Aug 2018.
-end-
*This research was a collaboration between Kumamoto University , Juntendo University, University of Ryukyus, and Hiroshima University.

[Source]

Tanigawa, S. et al., 2018. Organoids from Nephrotic Disease-Derived iPSCs Identify Impaired NEPHRIN Localization and Slit Diaphragm Formation in Kidney Podocytes. Stem Cell Reports, 11(3), pp.727-740. Available at: http://dx.doi.org/10.1016/j.stemcr.2018.08.003.

Kumamoto University

Related Kidney Disease Articles from Brightsurf:

Waistline matters in kidney disease
Does fat matter in kidney disease? The investigators found that all measures of higher abdominal fat content (including visceral fat, liver fat, or subcutaneous fat) and slower walk times were associated with increased levels of cardiometabolic risk factors in adults with non-dialysis dependent kidney disease.

Reducing urinary protein for patients with rare kidney disease slows kidney decline
New findings show that reducing the amount of protein in the urine of patients with focal segmental glomerulosclerosis can significantly slow declines in kidney function and extend time before patients' kidneys fail.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Acute kidney injury and end stage kidney disease in severe COVID-19
Many COVID-19 patients experience hematuria, proteinuria and elevated serum creatinine concentration early in the course of the disease.

Genes tell a story about diabetic kidney disease
Studying Finnish genes leads to unique revelations about the development of a serious complication of diabetes, and informs an ongoing genomic study of a Singaporean cohort as part of Singapore's Diabetes Study in Nephropathy and other Microvascular Complications (DYNAMO).

New study provides insight into chronic kidney disease
Researchers have further analyzed a known signaling pathway they believe brings them one step closer to understanding the complex physiology of patients with chronic kidney disease (CKD), which might provide a path to new treatment options.

Predicting risk of chronic kidney disease
Data from about 5 million people (with and without diabetes) in 28 countries were used to develop equations to help identify people at increased five-year risk of chronic kidney disease, defined as reduced estimated glomerular filtration rate (eGFR).

A healthy diet may help prevent kidney disease
In an analysis of published studies, a healthy dietary pattern was associated with a 30% lower incidence of chronic kidney disease.

Is kidney failure a man's disease?
A new analysis of the ERA-EDTA Registry [1] reveals a striking gender difference in the incidence and prevalence of end-stage renal disease.

Chronic kidney disease: Everyone's concern
850 million people worldwide are affected by kidney disease. This worrying figure was published last June.

Read More: Kidney Disease News and Kidney Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.