Monitoring air pollution after Hurricane Maria

October 31, 2018

When Hurricane Maria struck Puerto Rico on September 20, 2017, the storm devastated the island's electrical grid, leaving many people without power for months. This lack of electricity, as well as other storm-related damage, prevented air-quality monitoring in many areas. Now researchers have shown that low-cost sensors that run on solar energy can be used to monitor air pollution after a disaster. They report their results in ACS Earth and Space Chemistry.

Three months after Hurricane Maria, half of Puerto Rico still lacked electricity, while the other half experienced frequent power outages. As a result, backup generators that ran on gasoline or diesel were widely used, potentially increasing air pollution. Yet in many areas, official air-quality data were unavailable because of storm damage. R. Subramanian and colleagues wondered if the low-cost, solar-powered sensors that they had previously developed to monitor air quality -- called Real-time Affordable Multi-Pollutant (RAMP) monitors -- could help fill this gap.

The team deployed four RAMPs at different locations in the San Juan Metro Area of Puerto Rico in November 2017. Over a month-long period, the devices measured various pollutants, such as carbon monoxide, nitrogen dioxide, sulfur dioxide, nitric oxide and particulate matter. The researchers found that the concentrations of sulfur dioxide and carbon monoxide peaked between 4 a.m. and 8 a.m. local time each day, possibly due to nighttime atmospheric conditions that trapped pollutants. The levels of sulfur dioxide, carbon monoxide and black carbon were closely correlated, suggesting that the pollutants arose from the same combustion source (likely gas- and diesel-powered generators). The RAMP data also indicated that sulfur dioxide levels exceeded the U.S. Environmental Protection Agency's air quality standards on almost 80 percent of the days during the monitoring period. The researchers say that areas prone to natural disasters and other emergencies should include a set of calibrated, low-cost air-quality monitors in their preparedness plans.
-end-
The authors acknowledge funding from the U.S. Environmental Protection Agency.

The study is freely available as an Editor's Choice article here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Solar Energy Articles from Brightsurf:

'Transparent solar cells' can take us towards a new era of personalized energy
Solar power has shown immense potential as a futuristic, 'clean' source of energy.

CU Denver researcher analyzes the use of solar energy at US airports
By studying 488 public airports in the United States, University of Colorado Denver School of Public Affairs researcher Serena Kim, PhD, found that 20% of them have adopted solar photovoltaic (PV), commonly known as solar panels, over the last decade.

Researchers develop molecule to store solar energy
Researchers at Linköping University, Sweden, have developed a molecule that absorbs energy from sunlight and stores it in chemical bonds.

Converting solar energy to hydrogen fuel, with help from photosynthesis
Global economic growth comes with increasing demand for energy, but stepping up energy production can be challenging.

New nanodevice could use solar energy to produce hydrogen
Amsterdam, June 9, 2020 - Solar energy is considered by some to be the ultimate solution to address the current energy crisis and global warming and the environmental crises brought about by excessive consumption of fossil fuels.

Physicists develop approach to increase performance of solar energy
Experimental condensed matter physicists in the Department of Physics at the University of Oklahoma have developed an approach to circumvent a major loss process that currently limits the efficiency of commercial solar cells.

Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

New hybrid device can both capture and store solar energy
Researchers have reported a new device that can both efficiently capture solar energy and store it until it is needed, offering promise for applications ranging from power generation to distillation and desalination.

Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.

Read More: Solar Energy News and Solar Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.