The materials engineers are developing environmentally friendly materials

October 31, 2018

Recently the research article "A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning" written by the researchers of Tallinn University of Technology was published in a leading peer-reviewed journal Carbon.

The article introduces nanofibers, a material produced by the electrospinning device at the Laboratory of Polymers and Textile Technology in Tallinn University of Technology, and their expanding range of applications. It is not possible to produce fibers with a diameter smaller than a micrometer by using conventional fiber spinning methods. Therefore, electrospinning technology is introduced, by which nanofibers are created by applying high voltage to polymer solution. The beginning of the 20th century can be considered to be the starting point of electrospinning as a scientific discipline, the quest for industrial applications started 50 years ago. In recent years, there has been a surge of interest in electrospinning. One of the co-authors of the research article, Head of the Laboratory of Polymers and Textile Technology of Tallinn University of Technology, Professor Andres Krumme says, "The electrospun carbon nanomaterial can also be called smart fabric. The nanofibers forming the material are 100 times thinner in diameter than hair, being however extremely strong, tough, flexible and due to carbon content also conductive. The material allows efficient energy storage owing to its high speci?c surface area."

The specific properties of nanofibers render it a promising material for future applications:

"Cellulose used as the original raw material of smart fabric is very acceptable for human body due to its properties, i.e. the raw material used in polymer fabric is bio-based and supports the natural carbon cycle," Andres Krumme says.
-end-
Source: Carbon, 2018 https://www.sciencedirect.com/science/article/pii/S000862231830767X

Estonian Research Council

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.