Nav: Home

Naturally occurring 'batteries' fueled organic carbon synthesis on Mars

October 31, 2018

Washington, DC--Mars' organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian meteorites from a team led by Carnegie's Andrew Steele published in Science Advances.

The group's analysis of a trio of Martian meteorites that fell to Earth--Tissint, Nakhla, and NWA 1950--showed that they contain an inventory of organic carbon that is remarkably consistent with the organic carbon compounds detected by the Mars Science Laboratory's rover missions.

In 2012, Steele led a team that determined the organic carbon found in 10 Martian meteorites did indeed come from the Red Planet and was not due to contamination from Earth, but also that the organic carbon did not have a biological origin. This new work takes his research to the next step--trying to understand how Mars' organic carbon was synthesized, if not by biology.

Organic molecules contain carbon and hydrogen, and sometimes include oxygen, nitrogen, sulfur, and other elements. Organic compounds are commonly associated with life, although they can be created by non-biological processes as well, which are referred to as abiotic organic chemistry.

"Revealing the processes by which organic carbon compounds form on Mars has been a matter of tremendous interest for understanding its potential for habitability," Steele said.

He and his co-authors took a deep dive into the minerology of these three Martian meteorites. Using advanced microscopy and spectroscopy, they were able to determine that the meteorites' organic compounds were likely created by electrochemical corrosion of minerals in Martian rocks by a surrounding salty liquid brine.

"The discovery that natural systems can essentially form a small corrosion-powered battery that drives electrochemical reactions between minerals and surrounding liquid has major implications for the astrobiology field," Steele explained.

A similar process could occur anywhere that igneous rocks are surrounded by brines, including the subsurface oceans of Jupiter's moon Europa, Saturn's moon Enceladus, and even some environments here on Earth, particularly early in this planets' history.
-end-
The team included Carnegie's Pamela Conrad and Jianhua Wang; Liane Benning, Richard Wirth, and Anja Schreiber of the German Research Centre for Geosciences; Sandra Siljeström of the RISE Research Institutes of Sweden; Marc Fries and Francis McCubbin of the NASA Johnson Space Center; Karyn Rogers of Rensselaer Polytechnic Institute; Jen Eigenbrode of NASA's Goddard Space Flight Center; A. Needham of USRA-Science and Technology Institute; David Kilcoyne of Lawrence Berkeley National Laboratory; and Juan Diego Rodriguez Blanco of University of Leeds.

The paper is dedicated to the memory of Erik Hauri, a Carnegie scientist and co-author on the paper who died in September.

The researchers were supported by NASA, the Swedish National Space Board, the Swedish Research Council, the Helmholtz Recruiting Initiative, and the Department of Energy's Office of Basic Energy Sciences.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Meteorites Articles:

4-billion-year-old nitrogen-containing organic molecules discovered in Martian meteorites
Scientists exploring Mars and analysing Martian meteorite samples have found organic compounds essential for life: nitrogen-bearing organics in a 4-billion-year-old Martian meteorite.
A Martian mash up: Meteorites tell story of Mars' water history
University of Arizona researchers probed Martian meteorites to reconstruct Mars' chaotic history.
Meteorites reveal high carbon dioxide levels on early Earth
Tiny meteorites no larger than grains of sand hold new clues about the atmosphere on ancient Earth, according to scientists.
Tiny, ancient meteorites suggest early Earth's atmosphere was rich in carbon dioxide
Tiny meteorites that fell to Earth 2.7 billion years ago suggest that the atmosphere at that time was high in carbon dioxide, which agrees with current understanding of how our planet's atmospheric gases changed over time.
Shocked meteorites provide clues to Earth's lower mantle
An international team of scientists have completed a complex analysis of a ''shocked meteorite'' and gained new insight into Earth's lower mantle.
Sugar delivered to Earth from space
A new study has discovered meteorites containing RNA sugar, ribose, and other bio-important sugars; the first direct evidence of bio-essential sugars' delivery from space to the Earth.
What gives meteorites their shape? New research uncovers a 'Goldilocks' answer
Meteoroids coming from outer space are randomly shaped, but many of these, which land on Earth as meteorites, are found to be carved into cones.
Cyanide compounds discovered in meteorites may hold clues to the origin of life
Compounds containing iron, cyanide, and carbon monoxide discovered in carbon-rich meteorites by a team of scientists at Boise State University and NASA may have helped power life on early Earth.
Building blocks of the Earth
Geologists from the Universities of Cologne and Bonn gain new insights regarding the Earth's composition by analysing meteorites.
Oldest meteorite collection on Earth found in one of the driest places
Earth is bombarded every year by rocky debris, but the rate of incoming meteorites can change over time.
More Meteorites News and Meteorites Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.