Naturally occurring 'batteries' fueled organic carbon synthesis on Mars

October 31, 2018

Washington, DC--Mars' organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian meteorites from a team led by Carnegie's Andrew Steele published in Science Advances.

The group's analysis of a trio of Martian meteorites that fell to Earth--Tissint, Nakhla, and NWA 1950--showed that they contain an inventory of organic carbon that is remarkably consistent with the organic carbon compounds detected by the Mars Science Laboratory's rover missions.

In 2012, Steele led a team that determined the organic carbon found in 10 Martian meteorites did indeed come from the Red Planet and was not due to contamination from Earth, but also that the organic carbon did not have a biological origin. This new work takes his research to the next step--trying to understand how Mars' organic carbon was synthesized, if not by biology.

Organic molecules contain carbon and hydrogen, and sometimes include oxygen, nitrogen, sulfur, and other elements. Organic compounds are commonly associated with life, although they can be created by non-biological processes as well, which are referred to as abiotic organic chemistry.

"Revealing the processes by which organic carbon compounds form on Mars has been a matter of tremendous interest for understanding its potential for habitability," Steele said.

He and his co-authors took a deep dive into the minerology of these three Martian meteorites. Using advanced microscopy and spectroscopy, they were able to determine that the meteorites' organic compounds were likely created by electrochemical corrosion of minerals in Martian rocks by a surrounding salty liquid brine.

"The discovery that natural systems can essentially form a small corrosion-powered battery that drives electrochemical reactions between minerals and surrounding liquid has major implications for the astrobiology field," Steele explained.

A similar process could occur anywhere that igneous rocks are surrounded by brines, including the subsurface oceans of Jupiter's moon Europa, Saturn's moon Enceladus, and even some environments here on Earth, particularly early in this planets' history.
-end-
The team included Carnegie's Pamela Conrad and Jianhua Wang; Liane Benning, Richard Wirth, and Anja Schreiber of the German Research Centre for Geosciences; Sandra Siljeström of the RISE Research Institutes of Sweden; Marc Fries and Francis McCubbin of the NASA Johnson Space Center; Karyn Rogers of Rensselaer Polytechnic Institute; Jen Eigenbrode of NASA's Goddard Space Flight Center; A. Needham of USRA-Science and Technology Institute; David Kilcoyne of Lawrence Berkeley National Laboratory; and Juan Diego Rodriguez Blanco of University of Leeds.

The paper is dedicated to the memory of Erik Hauri, a Carnegie scientist and co-author on the paper who died in September.

The researchers were supported by NASA, the Swedish National Space Board, the Swedish Research Council, the Helmholtz Recruiting Initiative, and the Department of Energy's Office of Basic Energy Sciences.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Meteorites Articles from Brightsurf:

Meteorites show transport of material in early solar system
New studies of a rare type of meteorite show that material from close to the Sun reached the outer solar system even as the planet Jupiter cleared a gap in the disk of dust and gas from which the planets formed.

Unexpected abundance of hydrogen in meteorites reveals the origin of Earth's water
Meteorite material presumed to be devoid of water because it formed in the dry inner Solar System appears to have contained sufficient hydrogen to have delivered to Earth at least three times the mass of water in its oceans, a new study shows.

Earth may always have been wet
The Earth is the only planet known to have liquid water on its surface, a fundamental characteristic when it comes to explaining the emergence of life.

Surrey academics develop a new method to determine the origin of stardust in meteorites
Scientists have made a key discovery thanks to stardust found in meteorites, shedding light on the origin of crucial chemical elements.

Iron-rich meteorites show record of core crystallization in system's oldest planetesimals
New work uncovers new details about our Solar System's oldest planetary objects, which broke apart in long-ago collisions to form iron-rich meteorites.

How stony-iron meteorites form
Meteorites give us insight into the early development of the solar system.

X-rays recount origin of oddball meteorites
X-ray experiments at Berkeley Lab played a key role in resolving the origin of rare, odd meteorites that have puzzled scientists since their discovery a half-century ago.

An origin story for a family of oddball meteorites
Study suggests a family of rare meteorites likely came from an early planetesimal with a magnetic core.

Ancient asteroid impacts created the ingredients of life on Earth and Mars
A new study reveals that asteroid impact sites in the ocean may possess a crucial link in explaining the formation of the essential molecules for life.

4-billion-year-old nitrogen-containing organic molecules discovered in Martian meteorites
Scientists exploring Mars and analysing Martian meteorite samples have found organic compounds essential for life: nitrogen-bearing organics in a 4-billion-year-old Martian meteorite.

Read More: Meteorites News and Meteorites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.