Nav: Home

Flexy, flat and functional magnets

October 31, 2018

In the nanoworld, magnetism has proven to be truly surprising. Just a few atoms thick, magnetic 2D materials could help to satisfy scientists' curiosities and fulfil dreams for ever-smaller post-silicon electronics. An international research team led by PARK Je-Geun at the Center for Correlated Electron Systems, within the Institute for Basic Science (IBS), has just published a Perspective Review paper in Nature. It presents the latest achievements and future potentials of 2D magnetic van der Waals (vdW) materials, which were unknown until 6 years ago and have recently attracted worldwide attention.

VdW materials are made of piles of ultra-thin layers held together by weak van der Waals bonds. The success of graphene - vdW's star material - stimulated scientists to look for other 2D crystals, where layers can be changed, added or removed in order to introduce new physical properties, like magnetism.

How do materials become magnetic?

You can imagine that each electron in a material acts like a tiny compass with its own north and south poles. The orientation of these "compass needles" determines the magnetization. More specifically, magnetization arises from electrons' spin (magnetic moment) and depends on temperature. A ferromagnet, like a standard fridge magnet, acquires its magnetic properties below the magnetic transition temperature (Tc, Curie temperature), when all the magnetic moments are aligned, all "compass needles" point in the same direction. Other materials, instead, are antiferromagnetic, meaning that below the transition temperature (in this case called Neel temperature, TN), the "compass needles" point in the opposite direction. For temperatures aboveTc or TN,the individual atomic moments are not aligned, and the materials lose their magnetic properties.

However, the situation can dramatically change upon reducing materials to the 2D nanometer scale. An ultra-thin slice of a fridge magnet will probably show different features from the whole object. This is because 2D materials are more sensitive to temperature fluctuations, which can destroy the pattern of well-aligned "compass needles". For example, conventional bulk magnets, such as iron and nickel, have a much lower Tc in 2D than in 3D. In other cases, the magnetism in 2D really depends on the thickness: chromium triiodide (CrI3) is ferromagnetic as monolayer, anti-ferromagnetic as bilayer, and back to ferromagnetic as trilayer. However, there are other examples, like iron trithiohypophosphate (FePS3), which remarkably keeps its antiferromagnetic ordering intact all the way down to monolayer.

The key for producing 2D magnetic materials is to tame their spin fluctuations. 2D materials with a preferred spin direction (magnetic anisotropy) are more likely to be magnetic. Anisotropy can also be introduced artificially by adding defects, magnetic dopants or by playing with the interaction between the electron's spin and the magnetic field generated by the electron's movement around the nucleus.However, these are all technically challenging methods.

Park explains it with an analogy: "It is like supervising a group of restless and misbehaving kids, where each kid represents an atomic compass. You want to line them up, but they would rather play. It is a hard task, as any kindergarten teacher would tell you. You would need to precisely know the movements of each of them in time and space. And to control them, you need to respond right there and then, which is technically very difficult."

Why are physicists so interested in 2D magnetic vdW materials?

Several fundamental questions can be answered thanks to 2D magnetic vdW materials. In particular, vdW materials are the testbed to find experimental evidence for some mathematical-physical models that still remains unsolved. These models explain the magnetic transition behaviour in relation to the spin. In particular, the Ising model describes spins ("compass needles") constrained to point either up or down, perpendicular to the plane. The XY model allows spins to point at any direction on the plane, and finally, in the Heisenberg model, spins are free to point in any x, y, z direction.

In 2016, IBS scientists of Prof. Park's group found the first experimental proof of the Onsager solution for the Ising model. They found that FePS3's Tc is 118 Kelvin, or minus 155 degrees Celsius, in both 3D and 2D. However, the XY and Heisenberg models in 2D have encountered more experimental barriers, and are still lacking a proof after 50 years.

"My interest in 2D magnetic materials began with the simple idea of: What if...? The discovery of graphene led me to wonder if I could introduce magnetism to 2D materials similar to graphene," explains Park. "Physicists have inherited the challenge of studying and explaining the physical properties of the two-dimensional world. In spite of its academic importance and applicability, this field is very much underexplored," he adds.

Scientists are also keen on exploring ways to control and manipulate the magnetic properties of these materials electrically, optically, and mechanically. Their thinness makes them more susceptible to external stimuli. It is a limitation, but can also be a potential. For example, magnetism can also be induced or tuned by strain, or by arranging the overlapping layers in a specific pattern, known as the moiré pattern.

Which are the expected applications of magnetic vdW materials?

Although several fundamental questions are still waiting for an answer. Controlling and modifying electrons' spins and magnetic structures is expected to lead to several desirable outputs. This Nature Perspective Review lists possible hot research directions for the future.

One of the most sought-after applications is the use of spins to store and encode information. Controlled spins could replace the current hard drive platters, and even become the key to quantum computing. In particular, spintronics is the subject that aims to control electrons' spins. 2D materials are good candidates as they would require less power consumption in comparison with their 3D counterparts. One interesting hypothesis is to store long-term memory in stable whorls-oriented magnetic poles patterns, called skyrmions, in magnetic materials.

Potentially, vdW materials could unveil some exotic state of matter, like quantum spin liquids: a hypothetical state of matter characterized by disordered "compass needles" even at extremely low temperatures, and expected to harbor the elusive Majorana fermions, particles that have been theorized, but have never been seen before.

In addition, although superconductivity and magnetism cannot be easily accommodated in the same material, tinkering with spins' orders could produce new, unconventional superconductors.

Lastly, although the list of vdW materials has grown very quickly over the last few years, less than ten magnetic vdW materials have been discovered so far, so engineering more materials, especially materials that can be used at room temperature, is also an important goal of condensed matter physicists.

Institute for Basic Science

Related Graphene Articles:

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).
How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.
Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
More Graphene News and Graphene Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.