Nav: Home

JILA researchers see signs of interactive form of quantum matter

October 31, 2018

JILA researchers have, for the first time, isolated groups of a few atoms and precisely measured their multi-particle interactions within an atomic clock. The advance will help scientists control interacting quantum matter, which is expected to boost the performance of atomic clocks, many other types of sensors, and quantum information systems.

The research is described in a Nature paper posted early online Oct. 31. JILA is jointly operated by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

NIST scientists have been predicting "many body" physics and its benefits for years, but the new JILA work provides the first quantitative evidence of exactly what happens when packing together a few fermions--atoms that cannot be in the same quantum state and location at the same time.

"We are trying to understand the emergence of complexity when multiple particles--atoms here--interact with each other," NIST and JILA Fellow Jun Ye said. "Even though we may understand the rules perfectly on how two atoms interact, when multiple atoms get together there are always surprises. We want to understand the surprises quantitatively."

Today's best tools for measuring quantities such as time and frequency are based on control of individual quantum particles. This is the case even when ensembles of thousands of atoms are used in an atomic clock. These measurements are approaching the so-called standard quantum limit--a "wall" preventing further improvements using independent particles.

Harnessing of many-particle interactions could push that wall back or even break through it, because an engineered quantum state could suppress atom collisions and protect quantum states against interference, or noise. In addition, atoms in such systems could be arranged to cancel each other's quantum noise such that sensors would get better as more atoms were added, promising significant leaps in precision and data-carrying capacity.

In the new research, the JILA team used their three-dimensioned strontium lattice clock], which offers precise atom control. They created arrays of between one and five atoms per lattice cell, and then used a laser to set the clock "ticking," or switching at a specific frequency between two energy levels in the atoms. JILA's new imaging technique was used to measure the atoms' quantum states.

The researchers observed unexpected results when three or more atoms were together in a cell. The results were nonlinear, or unpredicted based on past experience, a hallmark of multi-particle interactions. The researchers combined their measurements with theoretical predictions by NIST colleagues Ana Maria Rey and Paul Julienne to conclude that multi-particle interactions occurred.

Specifically, the clock's frequency shifted in unexpected ways when three or more atoms were in a lattice site. The shift is different from what one would expect from summing up various pairs of atoms. For example, five atoms per cell caused a shift of 20 percent compared to what would normally be expected.

"Once you get three atoms per cell, the rules change," Ye said. This is because the atoms' nuclear spins and electronic configurations play together to determine the overall quantum state, and the atoms can all interact simultaneously instead of in a pair-wise fashion, he said.

Multi-particle effects also appeared in crowded lattice cells in the form of an unusual, rapid decay process. Two atoms per triad formed a molecule and one atom remained loose, but all had enough energy to escape the trap. By contrast, a single atom is likely to remain in a cell for a much longer time, Ye said.

"What this means is, we can make sure there is only one atom per cell in our atomic clock," Ye said. "Understanding of these processes will allow us to figure out a better path for making improved clocks, as particles inevitably will interact if we pack enough of them nearby to improve signal strength."

The JILA team also found that packing three or more atoms into a cell could result in long-lived, highly entangled states, meaning the atoms' quantum properties were linked in a stable way. This simple method of entangling multiple atoms may be a useful resource for quantum information processing.
This research is supported by NIST, the Defense Advanced Research Projects Agency, the Army Research Office, the Air Force Office of Scientific Research, National Science Foundation and National Aeronautics and Space Administration.

Paper: A. Goban, R.B. Hutson, G.E. Marti, S.L. Campbell, M.A. Perlin, P.S. Julienne, J.P. D'Incao, A.M. Rey,and J. Ye. 2018. Emergence of multi-body interactions in few-atom sites of a fermionic lattice clock. Nature. Advance Online Publication Oct. 31.

National Institute of Standards and Technology (NIST)

Related Atomic Clock Articles:

High-speed atomic video
A team including researchers from the Department of Chemistry at the University of Tokyo has successfully captured video of single molecules in motion at 1,600 frames per second.
X-ray imaging of atomic nuclei
Optically imaging atomic nuclei is a long-sought goal for scientific and applied research, but it has never been realized so far.
New POP atomic clock design achieves state-of-the-art frequency stability
Chinese researchers led by DENG Jianliao from the Shanghai Institute of Optics and Fine Mechanics (SIOM) have developed a pulsed optically pumped (POP) atomic clock with a frequency stability of 10-15 at 104 seconds based on a new design.
Atomic vacancy as quantum bit
Physicists from Würzburg for the first time have experimentally observed spin centers in two-dimensional materials.
An atomic view of the trigger for the heartbeat
Tiny pores in heart cells generate electrical signals to initiate each heart beat.
Taking an X-ray of an atomic bond
A group of researchers led by Drexel University has demonstrated a method that allows scientists to experimentally measure how the chemical bonds of materials are altered when two different materials are linked together.
A distinct spin on atomic transport
Physicists at ETH Zurich demonstrate simultaneous control over transport and spin properties of cold atoms, and thus establish a framework for exploring concepts in spintronics and solid-state physics.
Determining the shapes of atomic clusters
In a new study published in EPJ B, researchers propose a new method of identifying the morphologies of atomic clusters.
JILA's novel atomic clock design offers 'tweezer' control
JILA physicists have demonstrated a novel atomic clock design that combines near-continuous operation with strong signals and high stability, features not previously found together in a single type of next-generation atomic clock.
Milestones on the way to the nuclear clock
For decades, people have been searching for suitable atomic nuclei for building an ultra-precise nuclear clock.
More Atomic Clock News and Atomic Clock Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.