Nav: Home

Kidney cancer study uncovers new subtypes and clues to better diagnosis and treatment

October 31, 2019

The researchers used the most advanced genomic and proteomic technologies available to tease out their proteogenomic characteristics, defined as genetic makeup (genomics), chemical modifications to DNA (epigenomics), messenger RNA located in cells that serves as template to make proteins (transcriptomics), and proteins (proteomics) and their modification by phosphate group (phosphoproteomics), a modification known to regulate protein functions by switching on or off. The work was completed as part of the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC), a national effort to better understand cancers through proteogenomics.

Among their findings, investigators say, was that the loss of chromosome 3p is an apparent hallmark of ccRCC, occurring in almost all of the tumor samples in the study.

In addition, the researchers identified four distinct immune-based subtypes of ccRCC based on their immune cell differences that potentially could be used to help predict patients' overall survival and response to treatment.

Among all kidney cancers, ccRCC accounts for 75%, equating to about 65,000 new cases annually. Surgical removal remains the only effective treatment for cancers that have not spread beyond the kidney, but 30% of patients present with advanced disease at diagnosis.

"Historically, ccRCC has been considered resistant to conventional chemotherapy and radiation, and response to several FDA-approved drugs has been limited," says Daniel W. Chan, Ph.D., a professor of pathology and oncology, and director of the Center for Biomarker Discovery and Translation at the Johns Hopkins University School of Medicine. "The National Cancer Institute's The Cancer Genome Atlas (TCGA) has catalogued genetic alterations responsible for many cancers including ccRCC, but questions remained."

"Our results illustrate the complexity of cancer development, and that we can use proteomics and phosphoproteomics in addition to genomics to learn more about cancer phenotypes and their heterogeneity," says Hui Zhang, Ph.D., co-principal investigator of the study, professor of pathology and oncology, and director of the Mass Spectrometry Core Facility at the Johns Hopkins University School of Medicine.

"The use of one type of molecular study to understand cancer is no longer enough. A multi-omic approach is needed to fully characterize cancer," says lead study author and postdoctoral fellow David J. Clark, Ph.D.

Currently, Clark adds, frontline treatment for ccRCC that cannot be cured surgically is focused on inhibiting angiogenesis, the process by which cancers develop new blood vessels to maintain nourishment and growth, and targeting a protein kinase called mTOR that helps control cell survival and division. Overlaying the proteomic and phosphoproteomic data makes it possible, he says, for researchers to detect a wider array of potential targets for new drug development.

Other key findings of the analysis found that:

There were four distinct subtypes of ccRCC based on their tumor microenvironment signatures:

  1. CD8-positive inflamed tumors had a high amount of CD8-positive immune cells and responded to cell signaling pathways associated with an immune response.
  2. CD8-negative inflamed tumors had a near absence of CD8-positive immune cells but did have cells such as fibroblasts, which promote wound healing, and macrophages, which fight cancers and other foreign substances.
  3. Vascular endothelial growth factor (VEGF) immune desert tumors had no immune cells but had a strong presence of endothelial cells associated with the development of new blood vessel growth in tumor progression.
  4. Metabolic immune desert cells were more pure tumor cells with almost no immune cells and very few fibroblasts.
Based on The Cancer Genome Atlas data, Clark says, it appeared that those with CD8-positive inflamed tumors would have a worse overall survival while those with VEGF immune desert tumors would have the best overall survival. New predictive models by the researchers found that those with CD8-positive tumors would have the best response to immune checkpoint therapies, whereas those with VEGF immune desert tumors would show the best response to anti-angiogenesis therapies, targeted treatments that cut tumors off from their blood supply.

"Overall, this study reveals unique biological insights that are gained only when combining complementary proteomic and genomic analyses," says Zhang. "Our multi-level omics analysis identified underlying molecular mechanisms that are not fully captured at the genomic level, and defines protein phosphorylation and immune signatures necessary to stratify ccRCC patients with the goal of developing better, more targeted therapeutic interventions."

The team next plans to use similar methods to more fully characterize pancreatic and head and neck cancers.
-end-
Other study co-authors include Jianbo Pan, Yingwei Hu, Tung-Shing M. Lih, Lijun Chen, Qing Kay Li, Michael Schnaubelt, Minghui Ao, Kyung-Cho Cho, Shiyong Ma, Philip M. Pierorazio, Christian P. Pavlovich, Jiang Qian and Zhen Zhang of Johns Hopkins. Other investigators contributing to the study were from the University of Michigan; the Icahn School of Medicine at Mount Sinai, New York; Baylor College of Medicine, Houston; the National Cancer Institute, Bethesda, Md.; Washington University School of Medicine, St. Louis; the University of Chicago; MD Anderson Cancer Center, Houston; the University of Miami Miller School of Medicine; New York University School of Medicine; Georgetown University, Washington, D.C.; Memorial Sloan Kettering Cancer Center, New York; Poznań University of Medical Sciences, Poland; Pomeranian University of Medicine, Poland; the International Institute for Molecular Oncology, Poland; Frederick National Laboratory for Cancer Research, Frederick, Md.; and Sema4, Stamford, Conn.

The work was supported by the National Institutes of Health, the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) grant U24CA210985.

Johns Hopkins Medicine

Related Immune Cells Articles:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
Identification of new populations of immune cells in the lungs
In an article published in Nature Communications, the Immunophysiology Laboratory of the GIGA Institute, headed by Prof.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.