Nav: Home

Fish simulations provide new insights into energy costs of swimming

October 31, 2019

A new computational analysis suggests that maximizing swimming speeds while minimizing energy costs depends on an optimal balance between a fish's muscle dynamics and the way its size, shape, and swimming motion affect its movement through water. Grgur Tokic and Dick Yue of the Massachusetts Institute of Technology present these findings in PLOS Computational Biology.

Fish and other organisms, such as salmon and dolphins, swim in an undulating manner that enables high speeds at low energy costs. Many recent insights into energy consumption during swimming have arisen from advances in understanding of fish muscle biomechanics or modeling of swimming hydrodynamics--how a fish moves through water according to its size, shape, and swimming motion. However, few studies have combined the two.

For a more complete picture, Tokic and Yue employed a mathematical model they previously developed that combines muscle biomechanics with swimming hydrodynamics. They used the model to conduct an extensive analysis of energy consumption during swimming--starting from energy supplied to muscles and tracking how that energy is transformed into useful hydrodynamic propulsion.

In contrast to previous research, the new analysis shows that, in order to minimize energy consumed by a fish with a given body mass swimming a given distance, it needs not swim at maximum efficiency, calculated as power produced by muscles versus power consumed. To achieve maximum swimming speeds, fish muscles need not operate at maximum power levels. These findings are supported by real-world observations of swimming organisms across nine orders of magnitude in size.

"Our findings are surprising, but they are borne out by first principles from the underlying physics," Yue says. "They suggest that energetics of swimming can be substantially improved by optimizing the balance between muscle performance and hydrodynamics."

While this study simulated an idealized model organism, the researchers hope next to model the swimming energetics of realistic fish, such as tuna or salmon. Potential practical applications of this work could include development of man-made, biomimetic swimming apparatuses with unprecedented efficiency.
-end-
Peer-reviewed; Simulation; N/A

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007387

Citation: Tokic G, Yue DKP (2019) Energetics of optimal undulatory swimming organisms. PLoS Comput Biol 15(10): e1007387. https://doi.org/10.1371/journal.pcbi.1007387

Funding: The authors received no specific funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Energy Consumption Articles:

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.
Long-term developments of energy pricing and consumption in industry
Researchers at the Paul Scherrer Institute PSI have collaborated with British economists to study how energy consumption by Swiss industry develops depending on energy pricing.
Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.
A smart way to predict building energy consumption
In a time of aging infrastructure and increasingly smart control of buildings, the ability to predict how buildings use energy -- and how much energy they use -- has remained elusive, until now.
Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.
Space dragons: Researchers observe energy consumption in quasars
Researchers, for the first time, have observed the accelerated rate at which eight quasars consume interstellar fuel to feed their black holes.
New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study
Empirical energy consumption model quantifies Bitcoin's carbon footprint
Researchers have conducted the first analysis of Bitcoin power consumption based on empirical data from IPO filings and localization of IP addresses.
More Energy Consumption News and Energy Consumption Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.