Nav: Home

Malaria parasite lives on the edge

October 31, 2019

The parasite that causes malaria expresses genes that code for the proteins it will need in later life stages, using two separate schemes to prevent these proteins from actually being made until they are needed, according to new research. Having the mRNAs for these genes at the ready is risky: It's energetically costly, and proteins made prematurely can cause the parasites to become non-infectious. However, this strategy allows the parasite to quickly respond to unpredictable changes as it is transmitted between its mosquito and human hosts. Understanding these "translational repression" schemes may allow researchers to spot their weaknesses, which could be exploited in new strategies for combatting malaria.

The research, by a team of scientists at Penn State, the Institute for Systems Biology in Seattle, Johns Hopkins, and the University of Washington, appears October 31, 2019 in the journal, Nature Communications.

"The malaria parasite has a complex life-cycle in which it is transmitted back-and-forth between its mosquito and human hosts," said Scott Lindner, assistant professor of biochemistry and molecular biology at Penn State and one of the leaders of the research team. "The parasite can't predict when these transmissions will happen, so it needs to be able to react quickly to be able to deal with the changes in its environment. We knew how the parasite prepares for the jump from humans into mosquitoes, but until now no one had looked systematically at how the parasite prepared itself for going from mosquitoes into humans."

The malaria parasite, which according to the 2018 WHO World Malaria Report affects 200 million people annually, resulting in around 400,000 deaths, enters a mosquito when it takes a blood meal from an infected mammal. Inside the mosquito the male and female parasites fuse and eventually produce an oocyst on the mosquito's stomach. Inside the oocyst, the parasites undergo further transformation forming thousands of weakly-infectious sporozoites. When an oocyst ruptures, the sporozoites travel through the mosquito's equivalent of blood and burrow into the mosquito's salivary glands where they can be transmitted back into a mammal when the mosquito takes its next meal. During this trip from the oocyst and into the salivary gland, the sporozoites become 10,000 times more infectious.

The research team produced and purified large numbers of sporozoites from both the oocyst and salivary-gland stages, then used state-of-the-art RNA sequencing and mass spectrometry-based proteomics to identify essentially all of the mRNAs and proteins that were present in each stage. They did this in both Plasmodium yoelii--a malaria parasite that infects mice, which is easier to handle in the laboratory--and Plasmodium falciparum--a human-infectious parasite that causes most of the documented deaths associated with malaria.

"P. yoelii is often preferred in laboratory studies because we can easily track it through its entire life cycle, but it could have important differences to P. falciparum," said Lindner. "By studying both, we can determine how conserved these processes are and whether there are specific mRNAs or proteins that behave similarly across the parasite species that infect different hosts."

Through this study, the researchers demonstrated that, using a scheme similar to the parasites that are transmitted from humans to mosquitoes, the sporozoites produce mRNAs for genes that they will need in the next stage of their life cycle, but then actively repress their translation into proteins. As many as three-quarters of the most abundantly produced mRNAs are translationally repressed in this way.

"Excitingly, we identified two separate translational repression programs that operate simultaneously, independently, and upon different mRNAs," said Lindner. "The first program represses mRNA produced in oocyst sporozoites, which code for proteins that are made at some point during the parasite's trip from the mosquito's midgut into the salivary glands. The second program represses mRNA that are produced throughout both sporozoite stages but doesn't allow the production of the encoded proteins until the parasite is transmitted into its mammalian host."

"We are now trying to find how these translational repression programs are controlled in the parasite," said Lindner, "and if there are weaknesses that we can exploit in this risky strategy that we can use to push the parasite off the edge with new therapeutics."
-end-
In addition to Lindner, the research team includes Michael P. Walker, Erin N. Vrana, Kevin J. Hart, and Allen M. Minns at Penn State; Kristian E. Swearingen and Robert L. Moritz at the Institute for Systems Biology in Seattle, WA; Melanie J. Shears and Photini Sinnis at the Johns Hopkins School of Public Health; and Stefan H.I. Kappe at the University of Washington. The research was funded by Penn State, the U.S. National Institutes of Health, the U.S. National Science Foundation, and a Johns Hopkins University Provost's Postdoctoral Diversity Fellowship.

Penn State

Related Malaria Articles:

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the Umeå University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.
Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.
New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.
Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.
Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.
Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.
Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.
Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.
The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.
Free malaria tests coupled with diagnosis-dependent vouchers for over-the-counter malaria treatment
Coupling free diagnostic tests for malaria with discounts on artemisinin combination therapy (ACT) when malaria is diagnosed can improve the rational use of ACTs and boost testing rates, according to a cluster-randomized trial published this week in PLOS Medicine by Wendy Prudhomme O'Meara of Duke University, USA, and colleagues.
More Malaria News and Malaria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab