Bristol scientists find key to unlock body's own cancer defence

November 01, 2004

Scientists at Bristol University have found that a protein present in normal body tissues can prevent tumour growth.

A team led by Dr Dave Bates, British Heart Foundation Lecturer, and Dr Steve Harper, Senior Research Fellow in the Microvascular Research Laboratories, in the Department of Physiology at Bristol University, have discovered that a type of vascular endothelial growth factor (VEGF) found in normal tissue, including blood, can prevent cancers from growing. The research findings will be published in the world's most prestigious scientific cancer journal, 'Cancer Research', next week [1 November 2004].

The growth of any cancer depends on its ability to maintain a blood supply that will deliver nutrients. For a cancer to grow from the size of a pinhead to that of a golf-ball, the blood supply of the tumour has to grow with the expansion of the tumour itself. Most forms of VEGF help this blood vessel growth. The new form of VEGF, VEGF165b, which was discovered by the same team in 2002, inhibits the growth of new blood vessels required for tumours to grow above one millimetre.

They have also found that this form of VEGF is generally found in many normal parts of the body, including the prostate, but not in prostate cancer, and have established how this form of VEGF works on blood vessels.

The identification of how this new form of VEGF works, and its effects on tumours, means that it could be possible to prevent tumour growth by starving the tumour using the body's own anti-cancer agent, VEGF165b. The advantage of using VEGF165b over established compounds to treat cancer is that VEGF165b is a natural protein produced by the body under normal circumstances. Many new cancer therapies are based on starving the tumour of nutrients by attacking the tumour blood supply rather than the cancer cells. Blocking VEGF using antibodies has recently been shown to be effective in large-scale trials in colorectal cancer in the United States.

New blood vessel growth is also necessary for many normal body functions. These include the development of the embryo and, in adults, wound healing, the development of the placenta in pregnancy and of muscles during physical training programmes. However, it is thought that adults can live healthily without blood vessel growth for extended periods of time. This blood vessel growth is controlled by many factors, but VEGF is the most powerful factor.

Dr Bates, said: "Now that we have found out that this protein works in living tissues, we need to find the best way of using it in cancer, with tumour models. We also need to try it in models of other diseases where blood vessel growth is necessary, such as diabetes, age related macular degeneration and arthritis."

Dr Harper, added: "After two years of hard work it is a big step to show that this protein works in real cancers. We hope to be able to take this forward in the next few years to work out how to treat patients with cancer, eye disease and other conditions where this protein is important."
-end-


University of Bristol

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.