Fine-tuning lasers to destroy blood-borne diseases like AIDS

November 01, 2007

Physicists in Arizona State University have designed a revolutionary laser technique which can destroy viruses and bacteria such as AIDS without damaging human cells and may also help reduce the spread of hospital infections such as MRSA.

The research, published on Thursday November 1 in the Institute of Physics' Journal of Physics: Condensed Matter, discusses how pulses from an infrared laser can be fine-tuned to discriminate between problem microorganisms and human cells.

Current laser treatments such as UV are indiscriminate and can cause ageing of the skin, damage to the DNA or, at worst, skin cancer, and are far from 100 per cent effective.

Femtosecond laser pulses, through a process called Impulsive Stimulated Raman Scattering (ISRS), produces lethal vibrations in the protein coat of microorganisms, thereby destroying them. The effect of the vibrations is similar to that of high-pitched noise shattering glass.

The physicists in Arizona have undertaken experiments to show that the coherent vibrations excited by infrared lasers with carefully selected wavelengths and pulse widths do no damage to human cells, most likely because of the different structural compositions in the protein coats of human cells vis a vis bacteria and viruses.

Professor K. T. Tsen from Arizona State University said, "Although it is not clear at the moment why there is a large difference in laser intensity for inactivation between human cells and microorganisms such as bacteria and viruses, the research so far suggests that ISRS will be ready for use in disinfection and could provide treatments against some of the worst, often drug-resistant, bacterial and viral pathogens."

Femtosecond lasers could find immediate application in hospitals as a way to disinfect blood supply or biomaterials and for the treatment of blood-borne diseases such as AIDS and Hepatitis.
-end-


IOP Publishing

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.