Ready for their close-up

November 01, 2011

Proteins are literally the movers and the shakers of the intracellular world. If DNA is the film director, then they are the actors. And much can be learned about cell function - and dysfunction - by watching proteins on the move.

Until now, scientists have only been able to see this process indirectly. Now researchers at Vanderbilt University in Nashville, Tenn., have come up with a promising new technique that uses a scanning transmission electron microscope (STEM) to view proteins tagged with gold nanoparticles in whole, intact cells.

Determining the locations of proteins in an intact cell could help researchers study cancer processes, as well as understand how viruses break into healthy cells and hijack them, says Vanderbilt University assistant professor of physiology and biophysics Niels de Jonge, who will be presenting his team's results at the AVS Symposium in Nashville, Tenn., held Oct. 30 - Nov. 4. The benefits of the new technique could extend beyond biology to the energy and materials sciences, too, suggests de Jonge, giving researchers tools that could help them design better car batteries, for example.

Modern methods of studying protein interactions have limitations. Optical microscopes can capture sweeping vistas of whole, live cells; but though state-of-the-art techniques allow these microscopes to achieve a resolution of just 50 nanometers, the devices are not sensitive enough to zoom in for a close-up on individual proteins, which are only a few nanometers across. Transmission electron microscopes (TEM) can resolve the locations of individual proteins, but at the expense of the whole picture: the cell must be frozen, cut into pieces, and placed in a vacuum in order to be imaged.

To detect proteins in a whole, undamaged cell, the Vanderbilt scientists took advantage of a STEM analysis technique called annular dark-field (ADF) imaging, which involves collecting electrons from a ring around the STEM's electron-beam probe. ADF detectors are sensitive to heavy elements like gold, lead, and platinum, and much less sensitive to materials like water and carbon - the main components of a cell. By tagging proteins with gold nanoparticles, the researchers made the proteins stand out in strong relief from the otherwise signal-less cellular environment. Though no longer alive, the cells are preserved in as natural a state as possible, surrounded by liquid that is enclosed within a microchip device that can withstand the STEM's vacuum. To date, the team has achieved a resolution of about 4 nanometers - ten times better than the best optical microscopes.

De Jonge thinks the new method would be a powerful tool for scientists if used in combination with optical microscopy. "In the end, if it works, it's so easy," he says. "You add fluorescent labels to proteins. You observe a process going on [using an optical microscope] without killing the cell immediately. Then after some time, you take a snapshot with the electron microscope." By repeating the procedure several times, scientists could fix the cells at points of interest and zoom in on the areas they wished to see in detail.

For de Jonge, designing a procedure that helps solve pressing science problems would be "the crown of the work." But he stresses that more research is needed - not only to perfect the technique, but also to convince people that it works.

"Scientists want to use what they're used to," he says. "If we can demonstrate that this technique has advantages, then people will slowly start using it."
-end-
The AVS 58th International Symposium & Exhibition will be held Oct. 30 - Nov. 4 at the Nashville Convention Center.

Presentation IS+AS+SS-TuM3, "Imaging Tagged Proteins in Whole Eukaryotic Cells in Liquid with Scanning Transmission Electron Microscopy," is at 8:40 a.m. on Tuesday, Nov. 1.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

American Institute of Physics

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.