Cellular repair could reduce premature aging

November 01, 2011

Researchers have identified a potential drug therapy for a premature ageing disease that affects children causing them to age up to eight times as fast as the usual rate.

The study is the first to outline how to limit and repair DNA damage defects in cells and could provide a model for understanding processes that cause us to age.

The findings could have significant benefits, such as reducing degeneration of some tissues in older age, and could assist health management in countries, including the UK, where average life expectancy is extending, according to the researchers.

The first results of the 18-month study, led by Durham University, are published in the journal Human Molecular Genetics.

Researchers looked at a group of inherited degenerative disorders called Laminopathies that are caused by mutations in the gene LMNA. The most severe disorders linked to mutation in this gene include Hutchinson Gilford Progeria Syndrome (HGPS), a fatal disease that causes premature ageing in children.

The Durham University and University of Bologna team used in-vitro models and molecular imaging techniques to measure levels of oxidative stress and DNA damage in cells. Oxidative stress relates to the dynamics of cells and the body's ability to detoxify and repair itself. When cells are stressed, levels of highly reactive molecules known as reactive oxygen species (ROS) can increase dramatically. This can result in significant damage to cell structures and to DNA which is one underlying cause of premature ageing and standard ageing.

The team monitored changes in thousands of 'crinkly', damaged cells after administering NAC, a widely-used and well-tolerated drug. They found that while this drug did not affect some aspects of cell stress that are effectively controlled by currently used drugs, it very effectively controlled ROS generation and DNA damage. The results suggest that administration of NAC in combination with currently used drugs might improve the health of children with progeria.

Professor Chris Hutchison, a member of the Biophysical Sciences Institute, Durham University, said: "In children with progeria, we can see that double-strand breaks in the DNA architecture of cells increase which in turn adds to poor rates of cell growth. Our treatment of these cells with the drug N-acetyl cysteine (NAC) reversed both of these effects.

"Mutations in the LMNA gene cause more diseases, such as muscular dystrophy, than any other that we know. We've found that DNA damage can be controlled and our findings could be an important step to helping both children with progeria and older people to live lives that are less debilitating in terms of health problems."

The researchers said their findings were at an early stage and further studies and human clinical trials would be needed to develop effective drug treatments.

Professor Hutchison added: "We are using a careful approach that will look at patients with progeria to see if there's a model that can be used for wider medicine. It would be great to find a way to help relieve some of the effects of progeria and to extend the children's lives, whilst also finding a way to help increasingly ageing populations in many parts of the world.

"The findings are at a very early stage but they show the potential for helping people to live more comfortable and less painful lives when they reach 70 and 80 years of age and beyond."

Hutchinson-Gilford Progeria Syndrome "Progeria" or "HGPS" is a rare, fatal genetic condition characterized by an appearance of accelerated aging in children. Progeria has a reported incidence of about 1 in 4 - 8 million newborns from all over the world. It affects both sexes equally and all races. Although they are born looking healthy, children with Progeria begin to display many characteristics of accelerated aging at around 18-24 months of age.

Progeria signs include growth failure, loss of body fat and hair, aged-looking skin, stiffness of joints, hip dislocation, generalized atherosclerosis, cardiovascular (heart) disease and stroke. The children have a remarkably similar appearance, despite differing ethnic backgrounds. Children with Progeria die of atherosclerosis (heart disease) at an average age of thirteen years (with a range of about 8 - 21 years).

Dr. Leslie Gordon, Medical Director for The Progeria Research Foundation, said: "Dr. Hutchison's study has not only confirmed basic cellular defects in Progeria, but has also identified potential ways to improve those defects. This type of biological science is how progress towards treatments and a cure for children with Progeria will advance."

The research could also provide a model for the future for tailoring treatments and dosages of drugs to the individual and therefore improving patient health where drugs are administered.
-end-
The project was funded by the Association for Cancer Research, One North East and EU FP6.

Durham University

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.