Technology makes storing radioactive waste safer

November 01, 2011

Queensland University of Technology (QUT) researchers have developed new technology capable of removing radioactive material from contaminated water and aiding clean-up efforts following nuclear disasters.

The innovation could also solve the problem of how to clean up millions of tonnes of water contaminated by dangerous radioactive material and safely store the concentrated waste.

Professor Huai-Yong Zhu from QUT Chemistry said the world-first intelligent absorbent, which uses titanate nanofibre and nanotube technology, differed from current clean-up methods, such as layered clays and zeolites, because it could efficiently lock in deadly radioactive material from contaminated water.

The used absorbents can then be safely disposed without the risk of leakage, even if the material became wet.

"One gram of the nanofibres can effectively purify at least one tonne of polluted water," Professor Zhu said.

"This saves large amounts of dangerous water needing to be stored somewhere and also prevents the risk of contaminated products leaking into the soil."

The technology, which was developed in collaboration with the Australian Nuclear Science and Technology Organisation (ANSTO) and Pennsylvania State University in America, works by running the contaminated water through the fine nanotubes and fibres, which trap the radioactive Cesium (Cs+) ions through a structural change.

"Every year we hear of at least one nuclear accident. Not only is there a risk of contamination where human error is concerned, but there is also a risk from natural disasters such as what we saw in Japan this year," he said.

Professor Zhu and his research team believed the technology would also benefit industries as diverse as mining and medicine.

By adding silver oxide nanocrystals to the outer surface, the nanostructures are able to capture and immobilise radioactive iodine (I-) ions used in treatments for thyroid cancer, in probes and markers for medical diagnosis, as well as found in leaks of nuclear accidents.

"It is our view that just taking the radioactive material in the adsorbents isn't good enough. We should make it safe before disposing it," he said.

"The same goes for Australian sites where we mine nuclear products. We need a solution before we have a problem, rather than looking for fixes when it could be too late."

With a growing need to find alternatives to meet global energy needs, Professor Zhu said now was the time to put safeguards in place.

"In France, 75 per cent of electricity is produced by nuclear power and in Belgium, which has a population of 10 million people there are six nuclear power stations," he said.

"Even if we decide that nuclear energy is not the way we want to go, we will still need to clean-up what's been produced so far and store it safely," he said.

"Australia is one of the largest producers of titania that are the raw materials used for fabricating the absorbents of titanate nanofibres and nanotubes. Now with the knowledge to produce the adsorbents, we have the technology to do the cleaning up for the world."
-end-
**High-res images are available for media use.

Media contact: Alita Pashley, QUT media officer, 07 3138 1841 or alita.pashley@qut.edu.au

Queensland University of Technology

Related Nanotubes Articles from Brightsurf:

Nanotubes in the eye that help us see
A new mechanism of blood redistribution that is essential for the proper functioning of the adult retina has just been discovered in vivo by researchers at the University of Montreal Hospital Research Centre (CRCHUM).

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

Exotic nanotubes move in less-mysterious ways
Rice University researchers capture the first video of boron nitride nanotubes in motion to prove their potential for materials and medical applications.

Groovy key to nanotubes in 2D
New research offers a groovy answer to the question of what causes carbon nanotubes to align in ultrathin crystalline films discovered at Rice.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Watching energy transport through biomimetic nanotubes
Scientists from the University of Groningen (the Netherlands) and the University of W├╝rzburg (Germany) have investigated a simple biomimetic light-harvesting system using advanced spectroscopy combined with a microfluidic platform.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Photovoltaic nanotubes
Physicists discovered a novel kind of nanotube that generates current in the presence of light.

Chemical synthesis of nanotubes
For the first time, researchers used benzene -- a common hydrocarbon -- to create a novel kind of molecular nanotube, which could lead to new nanocarbon-based semiconductor applications.

Read More: Nanotubes News and Nanotubes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.