Researchers pinpoint possible new cause for unexplained miscarriages

November 01, 2011

TORONTO, ON., Nov. 1, 2011--Researchers at St. Michael's Hospital have identified a potential new cause for unexplained miscarriages in mice.

They also identified two possible treatments to prevent these miscarriages and their work has broader implications for the development of new drugs to treat heart attacks and strokes.

The researchers, led by Dr. Heyu Ni, found that the same kind of blood-clotting in coronary arteries or blood vessels in the brain that causes heart attacks and strokes also happens in the placenta. The massive clotting can destroy the placenta, block blood flow to the fetus and cause miscarriages.

This condition is known as fetal and neonatal immune thrombocytopenia (FNIT), a bleeding disorder in which mothers generate antibodies that attack and destroy platelets in their fetuses and newborns. Platelets are the small cells in the blood that play a key role in clotting. In severe cases, FNIT may lead to bleeding in the brains of the fetuses and newborns and cause neurological impairment or even death.

The condition affects between one in 800 and one in 1,500 live births and is more commonly reported among Caucasians.

Maternal antibodies to one specific platelet antigen, HPA-1 (human platelet antigen) cause 75-95 per cent of FNIT cases. Antigens are the proteins that antibodies attack because they think they are a foreign substance such as bacteria or a virus.

Dr. Ni and his team discovered a novel mechanism that might partially explain this problem. They found that another antigen, HPA-2, causes a type of FNIT never described before that can lead to miscarriages in more than 83 per cent of mice. There have been only six to eight reported live births in the world of humans with FNIT caused by HPA-2. The new research suggests the reason these cases appear to be so rare is that most of the affected fetuses died through miscarriages, before doctors examined them.

Dr. Conglei Li and other researchers in Dr. Ni's laboratory found that sometimes these antibodies not only destroy platelets, but activate them and cause massive clotting in the placentas.

Dr. Ni, an immunologist, is also a scientist with Canadian Blood Services (CBS), one of the funders of this research. His findings appear in the November issue of the prestigious Journal of Clinical Investigation.

Dr. Ni's group demonstrated that, in mice, these miscarriages can be prevented using at least two therapies. One is the transfusion of IgG (IVIG), a CBS product made from plasma from donated blood, which has been widely used to treat several autoimmune diseases. The other is the transfusion of an antibody known as anti-FcRn, which blocks the attacking maternal antibodies from crossing the placenta. This second method was developed by Dr. Ni's group.

"Fifty per cent of pregnancies do not end in a live birth. Our findings may help explain why some women are having miscarriages," said Dr. Ni. "Furthermore, our treatments could be the answer to carrying a healthy child to term."

The observations by Dr. Ni's team of platelet activation and enhancement of clotting may be important in the development of safer anti-thrombotic drugs. These drugs are under development by several companies.

Dr. Ni's group is now collaborating with clinicians to address how relevant these discoveries in mice are in humans.
-end-
About St. Michael's Hospital

St. Michael's Hospital provides compassionate care to all who enter its doors. The hospital also provides outstanding medical education to future health care professionals in more than 23 academic disciplines. Critical care and trauma, heart disease, neurosurgery, diabetes, cancer care, and care of the homeless are among the Hospital's recognized areas of expertise. Through the Keenan Research Centre and the Li Ka Shing International Healthcare Education Center, which make up the Li Ka Shing Knowledge Institute, research and education at St. Michael's Hospital are recognized and make an impact around the world. Founded in 1892, the hospital is fully affiliated with the University of Toronto.

For more information, please contact:

Leslie Shepherd,
Manager, Media Strategy,
Phone: 416-864-6094 or 647-300-1753
shepherdl@smh.ca
St. Michael's Hospital
Inspired Care. Inspiring Science.
www.stmichaelshospital.com
Follow us on Twitter: http://www.twitter.com/stmikeshospital

St. Michael's Hospital

Related Antibodies Articles from Brightsurf:

Scientist develops new way to test for COVID-19 antibodies
New research details how a cell-free test rapidly detects COVID-19 neutralizing antibodies and could aid in vaccine testing and drug discovery efforts.

Mussels connect antibodies to treat cancer
POSTECH research team develops innovative local anticancer immunotherapy technology using mussel protein.

For an effective COVID vaccine, look beyond antibodies to T-cells
Most vaccine developers are aiming solely for a robust antibody response against the SARS-CoV-2 virus, despite evidence that antibodies are not the body's primary protective response to infection by coronaviruses, says Marc Hellerstein of UC Berkeley.

Children can have COVID-19 antibodies and virus in their system simultaneously
With many questions remaining around how children spread COVID-19, Children's National Hospital researchers set out to improve the understanding of how long it takes pediatric patients with the virus to clear it from their systems, and at what point they start to make antibodies that work against the coronavirus.

The behavior of therapeutic antibodies in immunotherapy
Since the late 1990s, immunotherapy has been the frontline treatment against lymphomas where synthetic antibodies are used to stop the proliferation of cancerous white blood cells.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Seroprevalence of antibodies to SARS-CoV-2 in 10 US sites
This study estimates how common SARS-CoV-2 antibodies are in convenience samples from 10 geographic sites in the United States.

Neutralizing antibodies in the battle against COVID-19
An important line of defense against SARS-CoV-2 is the formation of neutralizing antibodies.

Three new studies identify neutralizing antibodies against SARS-CoV-2
A trio of papers describes several newly discovered human antibodies that target the SARS-CoV-2 virus, isolated from survivors of SARS-CoV-2 and SARS-CoV infection.

More effective human antibodies possible with chicken cells
Antibodies for potential use as medicines can be made rapidly in chicken cells grown in laboratories.

Read More: Antibodies News and Antibodies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.