Lessons from the Christchurch, New Zealand earthquake

November 01, 2011

El Cerrito, Calif. -- Details of an earthquake that rocked the largest city in the South Island of New Zealand in February 2011 may transform the way scientists assess the potential threat of fault lines that run through urban centers.

According to a series of new papers published today in Seismological Research Letters (SRL), scientists were surprised at the impact of the earthquake, which registered a relatively moderate magnitude 6.2. The in-depth review of the earthquake that killed more than 180 people and left thousands of homes uninhabitable in Christchurch represents an approach that the authors say should be applied to all earthquakes retrospectively.

"The March 2011 Japan earthquake and tsunami overshadowed the Christchurch earthquake, which was absolutely devastating in its own right," said Jonathan M. Lees, editor-in-chief of SRL and professor of geosciences at the University of North Carolina at Chapel Hill.

"Compared to the earthquake that destroyed much of Haiti, the scale of disaster in Christchurch may seem small," said Lees. "Christchurch, however, was constructed using much better technology and engineering practices, raising a very sobering alarm to other major, high density western urban centers."

The Christchurch earthquake ruptured a previously unmapped fault, surprising many with strong ground motion far greater than previously observed or expected from a magnitude 6.2 seismic event.

The SRL special issue features 19 original technical papers that cover different aspects of the 2011 Christchurch earthquake, including seismological, geodetic, geological and engineering perspectives.

Erol Kalkan, a research structural engineer and manager of the National Strong Motion Network with the U.S. Geological Survey and guest editor of the issue, says the issue serves as "a stand-alone reference" on the Christchurch earthquake and is an example of what should be done for every major earthquake. The first eight papers of this issue focus on earthquake source modeling, fault stress variation and aftershock sequence.

"This earthquake was remarkable on several counts," said Kalkan. "The ground motion was much larger than previously recorded, the high intensity of shaking was greater than expected, particularly for a moderate size earthquake, and the liquefaction-induced damage was extensive and severe within the Central Business District (CBD) of Christchurch."

The earthquake was reported to be felt across the South Island and the lower and central North Island. The Christchurch earthquake was especially meaningful, say the authors, because it followed a larger quake that produced less damage and no deaths.

The Feb. 22 earthquake was the strongest seismic event in a series of aftershocks following the magnitude 7.1 Darfield, New Zealand quake on Sept. 4, 2010. Both the Darfield and Christchurch earthquakes ruptured previously unmapped faults, but the corresponding damage was quite different, offering seismologists and engineers a unique opportunity to understand why the Christchurch earthquake proved so devastating.

In this issue, eight papers focus on the observed structural and geotechnical damages associated with the strong ground motion shaking, comparing differing levels of soil liquefaction and the corresponding structural performance of buildings, lifeline structures and engineering systems. The authors collectively provide a detailed catalogue of damage to levees, bridges and multi-story buildings, including stark contrasts in damage due to differing levels of liquefaction.

Much of Christchurch was formerly swampland, beach dune sand, estuaries and lagoons that were drained as the area was settled. Consequently, large areas beneath the city and its environs are characterized by loose silt, sand and gravel. Widespread liquefaction-induced damage within the CBD required 1000 buildings to be demolished, as detailed in a paper by Cubrinovski, et al.

Three papers concentrate on recorded strong ground motions and their engineering implications. "Many urban areas are built over soft sediments and in valleys or over basins, for example the San Francisco Bay Area and Los Angeles Metropolitan," Kalkan said. "These are urban areas that sit atop geological features that may exaggerate or amplify ground motion, just as Christchurch experienced. The question is how to apply or account for such significant, higher-than-expected ground motions, as seen in Christchurch, when evaluating the design of existing and new structures."

The Christchurch earthquake will have long-lasting, significant impact on engineering practices leading to profound changes in New Zealand's building code, says Kalkan, and on the understanding of amplified ground motion.
The bimonthly Seismological Research Letters serves as a general forum for informal communication among seismologists, as well as between seismologists and those non-specialists interested in seismology and related disciplines. SRL is published by the Seismological Society of America, an international scientific society devoted to the advancement of seismology and its applications in understanding and mitigating earthquake hazards and in imaging the Earth's structure.

Seismological Society of America

Related Earthquake Articles from Brightsurf:

Healthcare's earthquake: Lessons from COVID-19
Leaders and clinician researchers from Beth Israel Lahey Health propose using complexity science to identify strategies that healthcare organizations can use to respond better to the ongoing pandemic and to anticipate future challenges to healthcare delivery.

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.

Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.

Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.

Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.

Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.

Read More: Earthquake News and Earthquake Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.