Team discovers how a cancer-causing bacterium spurs cell death

November 01, 2011

CHAMPAIGN, Ill. -- Researchers report they have figured out how the cancer-causing bacterium Helicobacter pylori attacks a cell's energy infrastructure, sparking a series of events in the cell that ultimately lead it to self-destruct.

H. pylori are the only bacteria known to survive in the human stomach. Infection with H. pylori is associated with an increased risk of gastric cancer, the second-leading cause of cancer-related deaths worldwide.

"More than half the world's population is currently infected with H. pylori," said University of Illinois microbiology professor Steven Blanke, who led the study. "And we've known for a long time that the host doesn't respond appropriately to clear the infection from the stomach, allowing the bacterium to persist as a risk factor for cancer."

The new study, in Proceedings of the National Academy of Sciences, is the first to show how a bacterial toxin can disrupt a cell's mitochondria - its energy-generation and distribution system - to disable the cell and spur apoptosis (programmed cell death).

"One of the hallmarks of long-term infection with H. pylori is an increase in apoptotic cells," Blanke said. "This may contribute to the development of cancer in several ways." Apoptosis can damage the epithelial cells that line the stomach, he said, "and chronic damage to any tissue is a risk factor for cancer." An increase in apoptotic cells may also spur the hyper-proliferation of stem cells in an attempt to repair the damaged tissue, increasing the chance of mutations that can lead to cancer.

Previous studies had shown that VacA, a protein toxin produced by H. pylori, induces host cell death, Blanke said, "but the mechanism had been unknown."

The VacA protein was known to target the mitochondrion, an organelle that produces chemical energy where it is needed in the cell. In healthy cells, mitochondria fuse to form elaborate energy-generating networks in response to cellular needs. Mitochondria are important to a lot of other cellular processes; most important to Blanke and his colleagues, they regulate cell death.

While studying how a cell responds to infection, the researchers noticed that H. pylori induced mitochondrial fission. Instead of fusing and forming filamentous networks to respond to the cell's energy needs, the mitochondria were breaking into smaller, unconnected organelles.

"Fusion and fission are two dynamic and opposing processes that must be balanced to regulate mitochondrial structure and function," Blanke said. But infection with H. pylori - or with purified VacA toxin alone - was pushing the mitochondria toward fission.

The researchers found that VacA recruited a host protein, Drp1, to the mitochondria. This protein plays a central role in mitochondrial fission. Further experiments showed that Drp1-mediated fission of the mitochondrial networks was linked to activation of a cell-death-inducing factor, called Bax.

"The link between VacA action at the mitochondria and Bax-dependent cell death had previously been unknown," Blanke said.

This study provides a first direct link between a bacterial toxin-mediated disruption of mitochondrial dynamics and host cell death, Blanke said. It also opens a new avenue of investigation of other diseases linked to impaired mitochondrial function, he said.

"Hundreds of human diseases and disorders are associated with mitochondrial dysfunction, ranging from cancers to degenerative diseases such as Alzheimer's disease and Parkinson's," Blanke said. "As yet, no one has methodically investigated a potential link between bacterial infections and mitochondrial diseases, despite the fact that several dozen pathogenic bacteria and viruses are known to directly target mitochondria."

Blanke and his colleagues are beginning to investigate that link.

"To us, finding that a pathogen can disrupt mitochondria in a manner that has striking similarities to what has been observed in known mitochondrial diseases is potentially very exciting," said Blanke, who also is an affiliate of the Institute for Genomic Biology at Illinois.
-end-
The research team included Illinois doctoral student Prashant Jain and Professor Zhao-Qing Luo, of Purdue University.

Editor's notes: To reach Steven Blanke, email sblanke@illinois.edu.

The paper, "Helicobacter pylori vacuolating cytotoxin A (VacA) Engages the Mitochondrial Fission Machinery to Induce Host Cell Death," is available online or from the U. of I. News Bureau.

University of Illinois at Urbana-Champaign

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.