LSUHSC research identifies new therapeutic target for Alzheimer's disease

November 01, 2012

New Orleans, LA - Research led by Chu Chen, PhD, Associate Professor of Neuroscience at LSU Health Sciences Center New Orleans, has identified an enzyme called Monoacylglycerol lipase (MAGL) as a new therapeutic target to treat or prevent Alzheimer's disease. The study was published online November 1, 2012 in the Online Now section of the journal Cell Reports.

The research team found that inactivation of MAGL, best known for its role in degrading a cannabinoid produced in the brain, reduced the production and accumulation of beta amyloid plaques, a pathological hallmark of Alzheimer's disease. Inhibition of this enzyme also decreased neuroinflammation and neurodegeneration, and improved plasticity of the brain, learning and memory.

"Our results suggest that MAGL contributes to the cause and development of Alzheimer's disease and that blocking MAGL represents a promising therapeutic target," notes Dr. Chu Chen, who is also a member of the Department of Otolaryngology at LSU Health Sciences Center New Orleans.

The researchers blocked MAGL with a highly selective and potent inhibitor in mice using different dosing regimens and found that inactivation of MAGL for eight weeks was sufficient to decrease production and deposition of beta amyloid plaques and the function of a gene involved in making beta amyloid toxic to brain cells. They also measured indicators of neuroinflammation and neurodegeneration and found them suppressed when MAGL was inhibited. The team discovered that not only did the integrity of the structure and function of synapses associated with cognition remain intact in treated mice, but MAGL inactivation appeared to promote spatial learning and memory, measured with behavioral testing.

Alzheimer's disease is a neurodegenerative disorder characterized by accumulation and deposition of amyloid plaques and neurofibrillary tangles, neuroinflammation, synaptic dysfunction, progressive deterioration of cognitive function and loss of memory in association with widespread nerve cell death. The most common cause of dementia among older people, more than 5.4 million people in the United States and 36 million people worldwide suffer with Alzheimer's disease in its various stages. Unfortunately, the few drugs that are currently approved by the Food and Drug Administration have demonstrated only modest effects in modifying the clinical symptoms for relatively short periods, and none has shown a clear effect on disease progression or prevention.

"There is a great public health need to discover new therapies to prevent and treat this devastating disorder," Dr. Chen concludes. The research was supported by grants from the National Institutes of Health. In addition to scientists from LSU Health Sciences Center New Orleans, the research team also included investigators from the Massachusetts Institute of Technology.
-end-
LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC New Orleans consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, Schools of Allied Health Professions and Graduate Studies, and the only School of Nursing within an academic health center in the State of Louisiana. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Louisiana State University Health Sciences Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.