Brown researchers developing new interactive sleep app

November 01, 2016

PROVIDENCE, R.I. [Brown University] -- There are plenty of cellphone apps on the market designed to help people monitor their sleep patterns. The apps generally record data on when people go to bed and when they wake, and many use the device's microphone and accelerometer to take note of noises in the night and to monitor how much people toss and turn.

A group of Brown University computer scientists and clinical psychologists have come up with an approach that takes sleep monitoring one step further. The approach, dubbed SleepCoacher, uses sleep analytics to generate personalized recommendations informed by the scientific literature on sleep. SleepCoacher then guides users through a self-experimentation framework to help people find the recommendations that best work for them.

"The idea is to not only present people with information about their sleep, but to give them some control over it by giving recommendations along with a step-by-step plan for improving their sleep," said Nediyana Daskalova, a doctoral student in computer science at Brown who is leading the development of SleepCoacher.

Daskalova presented a paper on the SleepCoacher approach recently at the User Interface Software and Technology Symposium in Japan. The presentation included the results of two small pilot studies of SleepCoacher users, which found that 80 percent of people who followed the recommendations at least 60 percent of the time reported improvement in their sleep. The team is now working on a self-contained SleepCoacher app that they hope to make available to users early next year.

Daskalova and her team developed SleepCoacher under the direction of Jeff Huang, an assistant professor of computer science at Brown and leader of Brown's Human-Computer Interaction Group.

"Our work is the first of its kind to guide people to figure out whether the data is causal, instead of just correlation," Huang said. "That's particularly exciting for me. We have an approach that could work in the long term to continuously improve sleep over months or even years. And because we are aiming for a lifetime of improvement, this could be personalized for whether you are a night owl or morning person, a light or heavy sleeper, or even someone who needs more than the usual eight hours of sleep."

For the pilot studies, the team used a slightly modified version of a commercially available cellphone app called Sleep as Android. In addition to the app's standard monitoring capabilities, the modified version allows people to enter a rating of how refreshed they feel in the morning, as well as noting other factors that might affect sleep, like whether they had caffeine or alcohol during the day, or whether they exercised.

Using that data, the SleepCoacher algorithm looks to see what factors, either detected by the app or reported by the participants, were correlated with three key sleep outcomes: how long it took people to fall asleep, how many times they woke up during the night and how refreshed they reported feeling in the morning.

When a strong correlation is detected, the algorithm generates a recommendation based on a collection of 117 recommendation templates developed in consultation with a group of clinical psychologists and psychiatrists from Brown's Alpert Medical School. The recommendations were sent via text message to participants in the two studies, the first of which included 24 participants and the second 19.

"For example," Daskalova said, "a recommendation might say: 'We noticed that you go to bed at 10 p.m. on average. When you go to bed at 10:30 or later, you report feeling worse in the morning. We recommend you try to go to bed closer to 10."

SleepCoacher then guides users through mini experiments to see if that recommendation is useful. Users are instructed to follow the recommendation for several nights and then ignore it for several nights. By measuring differences in sleep outcome when the user follows the recommendation and when they don't, SleepCoacher determines whether or not that recommendation if right for that user.

"Just because something is highly correlated with an outcome doesn't mean that if you change it it's going to improve your sleep," Daskalova said. "The self-experiments help us build smarter recommendations that, over time, learn what might be actually important for individual users."

Daskalova said she was surprised to see just how much variation there was among people who participated in the studies.

"Some people who took a nap late in the day, for example, reported feeling better the next day, while others reported feeling worse," she said. "Ambient noise at night was a problem for some people and not others. There's really a lot of variation, which makes this problem so interesting to solve."

The SleepCoacher self-experiment process is designed to account for that variation and help people develop a tailored plan for better sleep. An important component of the approach, Daskalova says, was engaging the team of clinical professionals from the Alpert Medical School who work in the area of sleep. That team included Nicole Nugent, Julie Boergers and John McGeary.

"In addition to our clinical experience, we are active researchers," Nugent said. "So we could make sure that the recommendations came from the individual's data and what we know from science."

Nugent stressed that approaches like SleepCoacher are not a replacement for clinical intervention for people who have serious psychiatric disorders that often interfere with sleep, like post-traumatic stress disorder or serious anxiety disorders.

"This approach is really aimed at people whose sleep is a little off and who would like some help," she said. "I think that a surprising number of Americans and people around the world have poor sleep hygiene and don't actually know it. What's so great about SleepCoacher is that it allows people to be mindful and aware of their sleep patterns, and it gives them personalized direct feedback that is consistent with what we know in the literature about what healthy sleep looks like."

The code behind SleepCoacher is open-source and available on the project's website. The team is in the process of making self-contained SleepCoacher apps for iOS and Andriod, which they hope to make available on January 1. They also intent to perform more expansive studies of the apps to test their efficacy.
-end-
Huang, Nugent, Boergers and McGeary were all co-authors on the SleepCoacher paper, along with computer science students Danaë Metataxa-Kakavouli and Adrienne Tran.

Note to Editors:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Brown University

Related Sleep Articles from Brightsurf:

Size and sleep: New research reveals why little things sleep longer
Using data from humans and other mammals, a team of scientists including researchers from the Santa Fe Institute has developed one of the first quantitative models that explains why sleep times across species and during development decrease as brains get bigger.

Wind turbine noise affects dream sleep and perceived sleep restoration
Wind turbine noise (WTN) influences people's perception of the restorative effects of sleep, and also has a small but significant effect on dream sleep, otherwise known as REM (rapid eye movement) sleep, a study at the University of Gothenburg, Sweden, shows.

To sleep deeply: The brainstem neurons that regulate non-REM sleep
University of Tsukuba researchers identified neurons that promote non-REM sleep in the brainstem in mice.

Chronic opioid therapy can disrupt sleep, increase risk of sleep disorders
Patients and medical providers should be aware that chronic opioid use can interfere with sleep by reducing sleep efficiency and increasing the risk of sleep-disordered breathing, according to a position statement from the American Academy of Sleep Medicine.

'Short sleep' gene prevents memory deficits associated with sleep deprivation
The UCSF scientists who identified the two known human genes that promote 'natural short sleep' -- nightly sleep that lasts just four to six hours but leaves people feeling well-rested -- have now discovered a third, and it's also the first gene that's ever been shown to prevent the memory deficits that normally accompany sleep deprivation.

Short sleep duration and sleep variability blunt weight loss
High sleep variability and short sleep duration are associated with difficulties in losing weight and body fat.

Nurses have an increased risk of sleep disorders and sleep deprivation
According to preliminary results of a new study, there is a high prevalence of insufficient sleep and symptoms of common sleep disorders among medical center nurses.

Common sleep myths compromise good sleep and health
People often say they can get by on five or fewer hours of sleep, that snoring is harmless, and that having a drink helps you to fall asleep.

Sleep tight! Researchers identify the beneficial role of sleep
Why do animals sleep? Why do humans 'waste' a third of their lives sleeping?

Does extra sleep on the weekends repay your sleep debt? No, researchers say
Insufficient sleep and untreated sleep disorders put people at increased risk for metabolic problems, including obesity and diabetes.

Read More: Sleep News and Sleep Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.