Nav: Home

3-D-printed permanent magnets outperform conventional versions, conserve rare materials

November 01, 2016

OAK RIDGE, Tenn., Nov. 1, 2016--Researchers at the Department of Energy's Oak Ridge National Laboratory have demonstrated that permanent magnets produced by additive manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials.

Scientists fabricated isotropic, near-net-shape, neodymium-iron-boron (NdFeB) bonded magnets at DOE's Manufacturing Demonstration Facility at ORNL using the Big Area Additive Manufacturing (BAAM) machine. The result, published in Scientific Reports, was a product with comparable or better magnetic, mechanical, and microstructural properties than bonded magnets made using traditional injection molding with the same composition.

The additive manufacturing process began with composite pellets consisting of 65 volume percent isotropic NdFeB powder and 35 percent polyamide (Nylon-12) manufactured by Magnet Applications, Inc. The pellets were melted, compounded, and extruded layer-by-layer by BAAM into desired forms.

While conventional sintered magnet manufacturing may result in material waste of as much as 30 to 50 percent, additive manufacturing will simply capture and reuse those materials with nearly zero waste, said Parans Paranthaman, principal investigator and a group leader in ORNL's Chemical Sciences Division. The project was funded by DOE's Critical Materials Institute (CMI).

Using a process that conserves material is especially important in the manufacture of permanent magnets made with neodymium, dysprosium--rare earth elements that are mined and separated outside the United States. NdFeB magnets are the most powerful on earth, and used in everything from computer hard drives and head phones to clean energy technologies such as electric vehicles and wind turbines.

The printing process not only conserves materials but also produces complex shapes, requires no tooling and is faster than traditional injection methods, potentially resulting in a much more economic manufacturing process, Paranthaman said.

"Manufacturing is changing rapidly, and a customer may need 50 different designs for the magnets they want to use," said ORNL researcher and co-author Ling Li. Traditional injection molding would require the expense of creating a new mold and tooling for each, but with additive manufacturing the forms can be crafted simply and quickly using computer-assisted design, she explained.

Future work will explore the printing of anisotropic, or directional, bonded magnets, which are stronger than isotropic magnets that have no preferred magnetization direction. Researchers will also examine the effect of binder type, the loading fraction of magnetic powder, and processing temperature on the magnetic and mechanical properties of printed magnets.

Alex King, Director of the Critical Materials Institute, thinks that this research has tremendous potential. "The ability to print high-strength magnets in complex shapes is a game changer for the design of efficient electric motors and generators," he said. "It removes many of the restrictions imposed by today's manufacturing methods."

"This work has demonstrated the potential of additive manufacturing to be applied to the fabrication of a wide range of magnetic materials and assemblies," said co-author John Ormerod. "Magnet Applications and many of our customers are excited to explore the commercial impact of this technology in the near future," he stated.
-end-
Contributing to the project were Ling Li, Angelica Tirado, Orlando Rios, Brian Post, Vlastimil Kunc, R. R. Lowden, Edgar Lara-Curzio at ORNL, as well as researchers I. C. Nlebedim and Thomas Lograsso working with CMI at Ames Laboratory. Robert Fredette and John Ormerod from Magnet Applications Inc. (MAI) contributed to the project through an MDF technology collaboration. The DOE's Advanced Manufacturing Office provides support for ORNL's Manufacturing Demonstration Facility, a public-private partnership to engage industry with national labs.

The article is available to view on the Nature website at: http://www.nature.com/articles/srep36212.

ORNL is managed by UT-Battelle for DOE's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE's Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

About the Critical Materials Institute:



The Critical Materials Institute is a Department of Energy Innovation Hub led by the U.S. Department of Energy's Ames Laboratory and supported by DOE's Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office. CMI seeks ways to eliminate and reduce reliance on rare earth metals and other materials critical to the success of clean energy technologies.

DOE/Oak Ridge National Laboratory

Related Magnets Articles:

Magnets, all the way down!
If you can't move electrons around to study how factors like symmetry impact the larger-scale magnetic effects, what can you do instead?
Can the donut-shaped magnet 'CAPPuccino submarine' hunt for dark matter?
IBS scientists clarify that toroidal magnets can also look for axions, one of the particle candidates for the mysterious dark matter.
Tiny super magnets could be the future of drug delivery
Microscopic crystals could soon be zipping drugs around your body, taking them to diseased organs.
3-D-printed permanent magnets outperform conventional versions, conserve rare materials
Researchers at the Department of Energy's Oak Ridge National Laboratory have demonstrated that permanent magnets produced by additive manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials.
3-D-printed magnets
Scientists at TU Wien have found a way to create magnets in a 3-D printer.
Pushing the boundaries of magnet design
A Russian team has been pushing the boundaries of magnet design, as published in a recent study in EPJ Plus.
CMI announces domestic rare-earth magnet partnership with INFINIUM
The US Department of Energy's Critical Materials Institute announced today a new partnership with INFINIUM, a metals production technology company, to demonstrate the production of rare-earth magnets sourced and manufactured entirely in the US.
ORNL licenses rare earth magnet recycling process to Momentum Technologies
The Department of Energy's Oak Ridge National Laboratory and Momentum Technologies have signed a non-exclusive licensing agreement for an ORNL process designed to recover rare earth magnets from used computer hard drives.
ORNL licenses rare earth magnet recycling process to Momentum Technologies
The Department of Energy's Oak Ridge National Laboratory and Momentum Technologies have signed a non-exclusive licensing agreement for an ORNL process designed to recover rare earth magnets from used computer hard drives.
CMI, Oddello Industries pursue recovery of rare-earth magnets from used hard drives
A process developed for large-scale recovery of rare earth magnets from used computer hard drives will undergo industrial testing under a new agreement between Oddello Industries LLC and ORNL, as part of the Department of Energy's Critical Materials Institute.

Related Magnets Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...