Nav: Home

Short RNA molecules mapped in single cell

November 01, 2016

Researchers at Karolinska Institutet have measured the absolute numbers of short, non-coding, RNA sequences in individual embryonic stem cells. The new method could improve the understanding of how our genes are regulated and different cell types develop.

When information in our genes is used, for example to build a protein, it is first translated to messenger-RNA which functions as a blueprint for the protein. Our cells also contain non-coding, short, RNA sequences that do not contribute to the formation of proteins and whose functions are partly unknown. The best known of these is micro RNA (miRNAs), which can interact with the messenger RNA, and thereby regulate genes and cell function.

Researchers at Karolinska Institutet have now mapped the presence of short RNA-sequences in an individual cell. Previous research on short RNA molecules is based on analysis of many cells simultaneously, making it difficult to study the precise function.

"Our knowledge of the function of short RNA molecules is quite general. We have a picture of the general mechanisms, but it is less clear what specific role these molecules play in different types of cells or diseases," says Rickard Sandberg, professor at the Department of Cell and Molecular Biology, who is also affiliated to the Stockholm center of Ludwig Cancer Research.

The analysis was done using single-cell transcriptomics, a technique which makes it possible to measure the absolute numbers of short RNA molecules in a cell. Two types of embryonic stem cells were used, intended to mimic the early embryo, before and after it has attached to the uterine lining.

The researchers could detect large numbers of small RNAs in both cell states, including miRNA as well as shorter RNA fragments (tRNA and snoRNA) whose function is largely unknown. The researchers also found that large numbers of miRNAs are expressed differently in the two cell states.

"This is basic research and a demonstration that the method works, giving suggestions for further research. To map the levels of short RNA molecules in a cell is a first step in identifying the specific function of these molecules," says Omid Faridani, one of the lead authors of the study.

In the long run, Rickard Sandberg can imagine clinical applications of the method.

"We are, for example, interested in the role short RNA molecules play during embryonic development. We hope that, with more knowledge, this method could be used to identify which embryos have the best chance to develop, which would then be used to improve current IVF treatments," he says.
-end-
Publication

"Single-cell sequencing of the small-RNA transcriptome"
Omid R. Faridani, Ilgar Abdullayev, Michael Hagemann-Jensen, John P. Schell, Fredrik Lanner and Rickard Sandberg
Nature Biotechnology, online 31 October 2016. DOI: 10.1038/nbt.3701

Karolinska Institutet

Related Embryonic Stem Cells Articles:

New mechanisms that regulate pluripotency in embryonic stem cells are discovered
A study by researchers at the Center for Cell-Based Therapy, which is supported by FAPESP, identified microRNAs involved in pluripotency maintenance and cell differentiation.
Embryonic mammary gland stem cells identified
Research team led by Prof. Cédric Blanpain identified the mechanisms that regulate mammary gland development.
New insights into mechanisms regulating gene expression in embryonic stem cells
Researchers from Turku, Finland, have discovered new information about the mechanisms which maintain gene activity in human embryonic stem cells.
New tools to study the origin of embryonic stem cells
Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo.
Scientists approve the similarity between reprogrammed and embryonic stem cells
Researchers from the Vavilov Institute of General Genetics, Research Institute of Physical Chemical Medicine and Moscow Institute of Physics and Technology (MIPT) have concluded that reprogramming does not create differences between reprogrammed and embryonic stem cells.
Drug makes stem cells become 'embryonic' again
If you want to harness the full power of stem cells, all you might need is an eraser -- in the form of a drug that can erase the tiny labels that tell cells where to start reading their DNA.
Oncogene controls stem cells in early embryonic development
Many animal species delay the development of their embryos to ensure that their offspring is born at a favorable time.
Are embryonic stem cells and artificial stem cells equivalent?
Harvard Stem Cell Institute (HSCI) researchers at Massachusetts General Hospital and Harvard Medical School have found new evidence suggesting some human induced pluripotent stem cells are the 'functional equivalent' of human embryonic stem cells, a finding that may begin to settle a long running argument.
UCSF researchers control embryonic stem cells with light
UCSF researchers have for the first time developed a method to precisely control embryonic stem cell differentiation with beams of light, enabling them to be transformed into neurons in response to a precise external cue.
Protein plays unexpected role in embryonic stem cells
A protein long believed to only guard the nucleus also regulates gene expression and stem cell development.
More Embryonic Stem Cells News and Embryonic Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.