Nav: Home

New instrument could search for signatures of life on Mars

November 01, 2016

A sensing technique that the U.S. military currently uses to remotely monitor the air to detect potentially life-threatening chemicals, toxins, and pathogens has inspired a new instrument that could "sniff" for life on Mars and other targets in the solar system -- the Bio-Indicator Lidar Instrument, or BILI.

Branimir Blagojevic, a NASA technologist at the Goddard Space Flight Center in Greenbelt, Maryland, formerly worked for a company that developed the sensor. He has applied the technology to create an instrument prototype, proving in testing that the same remote-sensing technology used to identify bio-hazards in public places also could be effective at detecting organic bio-signatures on Mars.

BILI is a fluorescence-based lidar, a type of remote-sensing instrument similar to radar in principle and operation. Instead of using radio waves, however, lidar instruments use light to detect and ultimately analyze the composition of particles in the atmosphere.

Although NASA has used fluorescence instruments to detect chemicals in Earth's atmosphere as part of its climate-studies research, the agency so far hasn't employed the technique in planetary studies. "NASA has never used it before for planetary ground level exploration. If the agency develops it, it will be the first of a kind," Blagojevic said.

A Rover's 'Sense of Smell'

As a planetary-exploration tool, Blagojevic and his team, Goddard scientists Melissa Trainer and Alexander Pavlov, envision BILI as primarily "a rover's sense of smell."

Positioned on a rover's mast, BILI would first scan the terrain looking for dust plumes. Once detected, the instrument, then would command its two ultraviolet lasers to pulse light at the dust. The illumination would cause the particles inside these dust clouds to resonate or fluoresce. By analyzing the fluorescence, scientists could determine if the dust contained organic particles created relatively recently or in the past. The data also would reveal the particles' size.

"If the bio-signatures are there, it could be detected in the dust," Blagojevic said

BILI's Beauty

The beauty of BILI, Blagojevic added, is its ability to detect in real-time small levels of complex organic materials from a distance of several hundred meters. Therefore, it could autonomously search for bio-signatures in plumes above recurring slopes -- areas not easily traversed by a rover carrying a variety of in-situ instruments for detailed chemical and biological analysis. Furthermore, because it could do a ground-level aerosol analysis from afar, BILI reduces the risk of sample contamination that could skew the results.

"This makes our instrument an excellent complementary organic-detection instrument, which we could use in tandem with more sensitive, point sensor-type mass spectrometers that can only measure a small amount of material at once," Blagojevic said. "BILI's measurements do not require consumables other than electrical power and can be conducted quickly over a broad area. This is a survey instrument, with a nose for certain molecules."

With such a tool, which also could be installed on an orbiting spacecraft, NASA could dramatically increase the probability of finding bio-signatures in the solar system, he added. "We are ready to integrate and test this novel instrument, which would be capable of detecting a number organic bio-signatures," Blagojevic said. "Our goal is increasing the likelihood of their discovery."

Long Heritage

Blagojevic hopes to further advance BILI by ruggedizing the design, reducing its size, and confirming that it can detect tiny concentrations of a broad range of organic molecules, particularly in aerosols that would be found at the ground level on Mars.

"This sensing technique is a product of two decades of research," Blagojevic said, referring to the technology created by his former employer, Science and Engineering Services, LLC..

Blagojevic and his team used NASA's Center Innovation Fund, or CIF, to advance the technology. CIF stimulates and encourages creativity and innovation within NASA, targeting less mature, yet promising new technologies.
-end-
For more Goddard technology news, go to: http://gsfctechnology.gsfc.nasa.gov/newsletter/Current.pdf

NASA/Goddard Space Flight Center

Related Mars Articles:

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.
Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.
Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.
What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.
The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.
Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.
Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.
Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.
New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
Why we won't get to Mars without teamwork
If humanity hopes to make it to Mars anytime soon, we need to understand not just technology, but the psychological dynamic of a small group of astronauts trapped in a confined space for months with no escape, according to a paper published in American Psychologist, the flagship journal of the American Psychological Association.
More Mars News and Mars Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.