Nav: Home

Strange behavior in the crowded cellular environment

November 01, 2016

A group of researchers from RIKEN and Michigan State University have used the powerful K computer to show how molecules move within the extremely crowded interior of a bacterial cell.

In vitro studies--studies performed in test tubes--have given us great understanding of how molecules interact with one another. However, little is really known of how they interact in vivo--in actual cells--because due to the crowding, they can act based in ways that are difficult to model in test tubes. Approximately 70 percent of the cytosol is composed of water, and the remaining 30 percent is made up of macromolecules such as ribosomes, biomolecules such as proteins and DNA, metabolites such as ATP and amino acids, and ions.

For the study, published in eLife, the group modeled the inside of the smallest known bacteria--Mycoplasma genitalium--which has a length of approximately 400 nanometers--one nanometer being 1 billionth of a meter--and dynamically modeled approximately one trillion atoms within the cell, making this one of the largest molecular dynamic simulations performed to date. The simulation was carried out with GENESIS, a massively parallel molecular dynamics program developed at RIKEN. The calculations, which used 65,536 processing cores of the K computer, took several months to complete despite the power of the supercomputer.

The results of the study call into question the prevailing assumption that in the crowded cellular environment, interactions between molecules is primarily governed by a phenomenon known as the "volume exclusion effect," meaning that the molecules monopolize a certain volume of the solvent--in this case water--in the solution around them, preventing other molecules from occupying that space. In contrast, the simulation found that other interactions--such as electrostatic between charged molecules--play a major role.

Isseki Yu of RIKEN iTHES, the first author of the study, says, "This work has shown us that there are major differences between in vitro conditions and the in vivo conditions in the cell. We have found evidence for interactions beyond the 'volume exclusion effect', including protein-protein interactions and electrostatic interactions with ions and metabolites. These need to be taken into effect when interpreting in vitro studies."

According to Yuji Sugita, one of the leaders of the research team, who has laboratories in iTHES as well as the RIKEN Quantitative Biology Center and RIKEN Advanced Institute for Computational Science, "This research has brought us one step closer to the dream of simulating a complete cell at the molecular scale. The work will also contribute to drug development, as previous studies usually looked at interactions between proteins and a single candidate compound within water. Now, we will be able to also analyze the interactions between the candidate compound and other molecules within the crowded cellular environment." Sugita continues, "One limitation of this study is that because of the enormous computing power required, we were only able to conduct short simulations. We believe it is still accurate, but hope to be able to perform this work on even more powerful future computers to reduce the statistical uncertainties and incorporate other interactions into the simulation such as genomic DNA and cytoskeletal elements."

Michael Feig the leader of the project at Michigan State University, who is also affiliated with RIKEN's Quantitative Biology Center, says, "This work is large step forward towards the modeling of an entire cell in atomistic detail which will ultimately allow us to connect what we know at the molecular level with biological function at the cellular level."
-end-


RIKEN

Related Drug Development Articles:

COVID-19 drug development could benefit from approach used against flu
A new study from researchers at The University of Texas at Austin has found that some antivirals are useful for more than helping sick people get better -- they also can prevent thousands of deaths and hundreds of thousands of virus cases if used in the early stages of infection.
Chemistry breakthrough could speed up drug development
Scientists have successfully developed a new technique to reliably grow crystals of organic soluble molecules from nanoscale droplets, unlocking the potential of accelerated new drug development.
New model of the GI tract could speed drug development
MIT engineers have devised a way to speed new drug development by rapidly testing how well they are absorbed in the small intestine.
Super-charging drug development for COVID-19
Researchers are using cell-free manufacturing to ramp up production of valinomycin, a promising drug that has proven effective in obliterating SARS-CoV in cellular cultures.
Drug development for rare diseases affecting children is increasing
The number of treatments for rare diseases affecting children has increased, a new study suggests.
New opportunity for cancer drug development
After years of research on cell surface receptors called Frizzleds, researchers at Karolinska Institutet in Sweden provide the proof-of-principle that these receptors are druggable by small molecules.
Novel paradigm in drug development
Targeted protein degradation (TPD) is a new paradigm in drug discovery that could lead to the development of new medicines to treat diseases such as cancer more effectively.
Turbo chip for drug development
In spite of increasing demand, the number of newly developed drugs decreased continuously in the past decades.
A breakthrough for brain tumor drug development
Glioblastoma is a devastating disease with poor survival stats due in part to a lack of preclinical models for new drug testing.
Researchers diversify drug development options with new metal catalyst
A University of Illinois team of researchers led by chemistry professor M.
More Drug Development News and Drug Development Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.