Nav: Home

Scientists prove how genetics change behavior by studying worms' foraging strategies

November 01, 2016

"Organisms pay attention to what other members of their species are doing," says Cori Bargmann, a neuroscientist at Rockefeller University. "It's a very robust phenomenon that you see from humans on Twitter to bacteria, and everything in between."

That's why Bargmann, Torsten N. Wiesel Professor and head of Rockefeller University's Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, and her coworkers set out to understand how animals are incorporating social information into their behavior. Their most recent study pinpoints genome variations that allow animals to use information about their competitors to modify their innate strategies for searching for food. These findings provide concrete evidence for game theory, which suggests, among other things, that population density changes how individuals act.

In the study, Bargmann and her collaborators designed a series of experiments using Caenorhabditis elegans, a tiny roundworm with easily detectable habits. The worms interact with one another by secreting and sensing pheromones. "The advantage to using a simple organism like C. elegans is that you can look at questions in great detail," Bargmann says. "But some principles that emerge may apply to all species, including humans."

An unexpected role for pheromones

In the wild, C. elegans worms in the quest for food alternate between an exploratory behavior called roaming and a less active behavior called dwelling, where the worms essentially "hunker down and eat," Bargmann says. By exploring the differences in the worms' behavior in various settings, the researchers found a new role for pheromones called ascarosides. These signaling molecules control behaviors like male sexual activity. (C. elegans are self-fertilizing hermaphrodites, but some do have sex--though worms tend to get lucky only once every 100 generations.) But Bargmann found the pheromone also seemed to help the animals modify their behaviors based on how many worms were nearby.

With further experimental analysis, the scientists identified two distinct genetic variants that resulted in these sensitivity differences, suggesting that in crowded places, wild C. elegans populations with a specific genetic variation adopt different behaviors than those who don't. The variants that are insensitive make less of a key protein that senses ascarosides in their olfactory system than those that are sensitive.

Evolution and social behavior

"The big take home," Bargmann says, "is that one of the ways behavior evolves is through the appearance of genetic changes that affect sensory capabilities. We have every reason to believe that human behaviors have been shaped in a similar way." The findings also suggest that natural trait variations are the result of both environmental cues and genetic changes.

For example, reptiles don't eat sugar, and have lost their sweet-tasting receptors during the course of evolution. But hummingbirds evolved from reptiles, and they can nevertheless taste sugar--meaning they had to evolve a brand new taste receptor. "This is an evolutionary change in sensitivity, matched to diet," Bargmann says. "We're seeing something similar in the C. elegans pheromone sensitivity as well."

She says, "It may be that behavior is shaped in an ongoing way by variations in the genome that affect our sensitivity to the external world. There's so much more to learn about genetic variations that may lead to differences in behavior."

Either way, Bargmann says, "The recognition that population density is a regulator of behavioral strategies may provoke thought about human behavior's links to its animal origins."
-end-


Rockefeller University

Related Behavior Articles:

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.
How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.
I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.
Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.
AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.
Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.
Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.
Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.
Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.
Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
More Behavior News and Behavior Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.