Nav: Home

PET imaging visualizes hard-to-diagnose cardiac amyloidosis

November 01, 2016

Reston, Virginia - Researchers at Princess Alexandra Hospital, Brisbane, Australia, have demonstrated that cardiac amyloidosis (abnormal deposits of proteins in the heart), which is notoriously difficult to diagnose, can be visualized noninvasively with positron emission tomography (PET) using the radiotracer fluorine-18 (F-18)-florbetaben. The study is published in the November issue of "The Journal of Nuclear Medicine."

Amyloidosis eventually leads to dysfunction of the affected organs. When the heart is affected, the prognosis is extremely poor. Dr W. Phillip Law, the corresponding author of the study, explains, "The first signs and symptoms of the disease are nonspecific and usually attributed to other conditions. Currently, there is no definitive test to diagnose cardiac amyloidosis other than an invasive biopsy of the heart muscle. Cardiac amyloidosis is often not diagnosed until late in the course of the disease, as the typical appearance of the infiltrated myocardium on echocardiography and MRI can be mistaken for other more prevalent disorders."

While previous research of amyloid radiotracers in the heart has used normal subjects as controls, this study compared subjects with thickened heart muscle secondary to amyloid deposition to those with thickened myocardium due to hypertensive heart disease.

Being able to visualize and quantify amyloid deposition in heart muscle may provide an accurate and noninvasive means of diagnosing the disorder and also may be useful in monitoring disease burden.

F-18-florbetaben PET was performed in 14 subjects. Target-to-background standardized uptake values (SUV) ratio and percentage myocardial radiotracer retention were higher in amyloid patients compared to hypertensive control subjects. A cut-off value of 40 percent was able to differentiate between cardiac amyloid patients and hypertensive control subjects.

The study shows that F-18-florbetaben PET imaging can accurately identify and differentiate between cardiac amyloidosis and hypertensive heart disease. Percentage myocardial F-18-florbetaben retention was an independent determinant of myocardial dysfunction in cardiac amyloidosis.

Looking ahead, Dr Law envisions, "Tailored molecular imaging with PET using florbetaben may significantly simplify the diagnostic algorithm for patients with suspected cardiac amyloidosis. Future studies investigating florbetaben uptake pattern in other [non-amyloid, non-hypertensive] causes of heart muscle thickening would further clarify the specificity of florbetaben." He adds, "The relationship of PET quantification of florbetaben retention in the heart, with histological amyloid plaque burden, may provide another means of monitoring disease and could also be useful in monitoring response of cardiac amyloid to treatment, but further research needs to be undertaken to investigate this relationship."
-end-
Authors of the article "Cardiac amyloid imaging with 18F-florbetaben positron emission tomography: a pilot study" include W. Phillip Law, University of Queensland and Princess Alexandra Hospital, Brisbane, Australia, and William Y.S. Wang, Peter T. Moore, Peter N. Mollee, and Arnold C.T. Ng, Princess Alexandra Hospital, Brisbane, Australia.

This work was funded in part by a Princess Alexandra Hospital Research Foundation grant and a National Health and Medical Research Council early career fellowship.

Please visit the SNMMI Media Center to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at (703) 652-6773 or lcallahan@snmmi.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Society of Nuclear Medicine

Related Heart Muscle Articles:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication
Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.
Heart muscle cells change their energy source during heart regeneration
Researchers from the Hubrecht Institute (KNAW) have found that the muscle cells in the heart of zebrafish change their metabolism during heart regeneration.
New study may have the reason why heart medication gives muscle pain
The McMaster research team found muscle cells treated with statins released the amino acid called glutamate at much higher levels than muscle cells that were untreated.
Vitamin E found to prevent muscle damage after heart attack
Early studies from scientists at the Baker Heart and Diabetes Institute in Australia and Jena University in Germany have found Vitamin E could be used to save the muscle from dying during a heart attack.
A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.
What is known -- and not known -- about heart muscle diseases in children
Cardiomyopathies (heart muscle diseases) in children are the focus of a new scientific statement from the American Heart Association that provides insight into the diagnosis and treatment of the diseases as well as identifying future research priorities.
Being overweight as a teen may be associated with higher risk of heart muscle disease in adulthood
The risk of developing cardiomyopathy, which often leads to heart failure, increased in adult Swedish men who were even mildly overweight around age 18.
Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.
UA scientist identifies cellular gene signatures for heart muscle regeneration
A research team led by Jared Churko, PhD, director of the University of Arizona iPSC Core in the UA Sarver Heart Center, used a transcriptomic approach -- studying what genes are expressed -- to identify gene signatures of cell subpopulations identified as atrial-like or ventricular-like.
More Heart Muscle News and Heart Muscle Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.