Nav: Home

Enhancement in rate of photocatalysis upon catalyst recycling

November 01, 2016

In chemistry, in order to achieve efficiency of any chemical reaction, a catalyst is added that serves to ideally increase the rate of reaction without any deleterious effects. Specifically, a photocatalyst is one which is activated under light and can lead to improvement in rates of a variety of redox based reactions. An aspect of photocatalysis that normally does not get much recognition is recyclability. In fact, for a catalyst to be viable it must be able to withstand the reaction conditions repeatedly and the rates of reaction, upon re-using the catalysts, must not change dramatically (or at all infact). In reality, however, most catalysts eventually undergo degradation. Presented in this work from Deepa Khushalani's group is a seminal observation where they noted an increase in rate of reaction upon recycling. The increase was 1.7 times higher in the second cycle (when compared to the first) and it was 3.1 times higher in the third cycle (again, when compared to the first). Moreover we have shown that photocatalysts can in fact undergo structural evolution and, in certain conditions, evolve to be a more effective additive for subsequent reusability. This aspect is unique since the understanding, previous to this work, was that catalysts remain unchanged during the reactions.
-end-


Tata Institute of Fundamental Research

Related Recycling Articles:

Lighting the path to recycling carbon dioxide
Combining solar-harvesting materials with carbon-dioxide-consuming microbes could be an efficient way to generate clean fuels.
Plastics, waste and recycling: It's not just a packaging problem
Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.
NREL research points to strategies for recycling of solar panels
Researchers at the National Renewable Energy Laboratory (NREL) have conducted the first global assessment into the most promising approaches to end-of-life management for solar photovoltaic (PV) modules.
Recycling plastics together, simple and fast
Scientists successfully blended different types of plastics to be recycled together, providing a solution to the environmental problem of plastic waste and adding economic value to plastic materials.
Chemical recycling makes useful product from waste bioplastic
A faster, more efficient way of recycling plant-based 'bioplastics' has been developed by a team of scientists at the universities of Birmingham and Bath.
New recycling method could make polyurethane sustainable
Polyurethanes (PUs) are used in many products, such as mattresses, insulation, footwear and construction materials.
Almond orchard recycling a climate-smart strategy
Recycling orchard trees onsite can sequester carbon, save water and increase crop yields, making it a climate-smart practice for California's irrigated almond orchards, finds a study from the University of California, Davis.
'Deceptively simple' process could boost plastics recycling
Plastics are a victim of their own success, so inexpensive, easy to use and versatile that the world is awash in plastic waste.
New membranes for cellular recycling
Cells produce the shell of the autophagosomes on the spot.
New way of recycling plant-based plastics instead of letting them rot in landfill
Scientists at the University of Bath have developed a chemical recycling method that breaks down plastics into their original building blocks, potentially allowing them to be recycled repeatedly without losing quality.
More Recycling News and Recycling Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.