Nav: Home

Two antibiotics fight bacteria differently than thought

November 01, 2016

Two widely prescribed antibiotics -- chloramphenicol and linezolid -- may fight bacteria in a different way from what scientists and doctors thought for years, University of Illinois at Chicago researchers have found. Instead of indiscriminately stopping protein synthesis, the drugs put the brakes on the protein synthesis machinery only at specific locations in the gene.

Ribosomes are among the most complex components in the cell, responsible for churning out all the proteins a cell needs for survival. In bacteria, ribosomes are the target of many important antibiotics.

The team of Alexander Mankin and Nora Vazquez-Laslop has conducted groundbreaking research on the ribosome and antibiotics. In their latest study, published in the Proceedings of the National Academy of Sciences, they found that while chloramphenicol and linezolid attack the catalytic center of the ribosome, they stop protein synthesis only at specific checkpoints.

"Many antibiotics interfere with the growth of pathogenic bacteria by inhibiting protein synthesis," says Mankin, director of the UIC Center for Biomolecular Sciences and professor of medicinal chemistry and pharmacognosy. "This is done by targeting the catalytic center of the bacterial ribosome, where proteins are being made. It is commonly assumed that these drugs are universal inhibitors of protein synthesis and should readily block the formation of every peptide bond."

"But -- we have shown that this is not necessarily the case," said Vazquez-Laslop, research associate professor of medicinal chemistry and pharmacognosy.

A natural product, chloramphenicol is one of the oldest antibiotics on the market. For decades it has been useful for many bacterial infections, including meningitis, plague, cholera and typhoid fever.

Linezolid, a synthetic drug, is a newer antibiotic used to treat serious infections -- streptococci and methicillin-resistant Staphylococcus aureus (MRSA), among others -- caused by Gram-positive bacteria that are resistant to other antibiotics. Mankin's previous research established the site of action and mechanism of resistance to linezolid.

While the antibiotics are very different, they each bind to the ribosome's catalytic center, where they were expected to inhibit formation of any peptide bond that links the components of the protein chain into a long biopolymer. In simple enzymes, an inhibitor that invades the catalytic center simply stops the enzyme from doing its job. This, Mankin said, had been what scientists had believed was also true for antibiotics that target the ribosome.

"Contrary to this view, the activity of chloramphenicol and linezolid critically depends on the nature of specific amino acids of the nascent chain carried by the ribosome and by the identity of the next amino acid to be connected to a growing protein," Vazquez-Laslop said. "These findings indicate that the nascent protein modulates the properties of the ribosomal catalytic center and affects binding of its ligands, including antibiotics."

Combining genomics and biochemistry has allowed the UIC researchers to better understand how the antibiotics work.

"If you know how these inhibitors work, you can make better drugs and make them better tools for research," said Mankin. "You can also use them more efficiently to treat human and animal diseases."
-end-
James Marks, Krishna Kannan, Emily Roncase, Dorota Klepacki, Amira Kefi and Cedric Orelle, all of UIC, are co-authors on the publication. The research was funded by National Institutes of Health grant AI 125518.

University of Illinois at Chicago

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...