Micro-earthquakes preceding a 4.2 earthquake near Istanbul as early warning signs?

November 01, 2018

One of the high-risk geological structures lies near Istanbul, a megacity of 15 million people. The North Anatolian fault, separating the Eurasian and Anatolian tectonic plates, is a 1.200 kilometer-long fault zone running between eastern Turkey and the northern Aegean Sea. Since the beginning of the 20th century its seismic activity has caused more than 20.000 deaths. A large (Mw > 7) earthquake is overdue in the Marmara section of the fault, just south of Istanbul.

In a new study, led by Peter Malin and Marco Bohnhoff of the GFZ German Research Center for Geosciences, the authors report on the observation of foreshocks that, if analyzed accordingly and in real-time, may possibly increase the early-warning time before a large earthquake from just a few seconds up to several hours. However, the authors caution: „The results are so far based on only one - yet encouraging - field example for an ,earthquake preparation sequence' typically known from repeated rock-deformation laboratory experiments under controlled conditions", says Marco Bohnhoff.

The study from Peter Malin and Marco Bohnhoff, together with colleagues from the AFAD Disaster and Emergency Management Presidency in Turkey, uses waveform data from the recently implemented GONAF borehole seismic network. GONAF operates at low-magnitude detection. It allowed identifying a series of micro-earthquakes prior to an earthquake of magnitude 4.2 which occurred in June 2016 south of Istanbul and which was the largest event in the region in several years.

In the latest issue of Scientific Reports, seismic data from the GONAF network, set up by GFZ in collaboration with AFAD along the Marmara Sea near Istanbul, is processed and analyzed with novel processing techniques. The high resolution borehole seismic array allowed for the detection of tens of seismic events prior to the mainshock. These small events would have been below the detection threshold of most seismic networks worldwide. By means of the new processing technique, clustering and similarity of the seismic signals was shown to substantially increase in the hours prior to the Mw 4.2 earthquake. If this so-called emergent failure process would be a persistent feature of seismicity there, implementing real-time processing of the novel technique could extend the warning time for future earthquakes in the Istanbul region and lead to a major improvement in the early-warning system for the densely populated area of the Turkish megacity.

"Our study shows a substantial increase in self-similarity of the micro-quakes during the hours before the mainshock," says Professor Bohnhoff of the GFZ; "while the current early-warning system in place in Istanbul relies on the arrival times of seismic waves emitted from the hypocentre to the city and is therefore restricted to a couple of seconds at maximum". While similar precursory activity has been detected for recent large earthquakes in Japan (2011 Mw9 Tohoku-Oki) and Chile (2014 Mw8.1 Iquique), this is at present by no means a ubiquitous observation and needs further testing before its implementation.
Original study: Malin, E.P., Bohnhoff, M., Blümle, F., Dresen, G., Martínez-Garzón, P., Nurlu, M., Ceken, U., Kadirioglu, F.T., Kartal, R.F., Kilic, T., Yanik, K., 2018. Microearthquakes preceding a M4.2 Earthquake Offshore Istanbul. Nature Scientific Reports. DOI: 10.1038/s41598-018-34563-9


BU_de: Istanbul und im Hintergrund die Prinzeninseln, auf denen sich das Bohrlochobservatorium GONAF befindet (Foto: M. Bohnhoff, GFZ).

BU_en: Istanbul and the Prince Islands in the background, on which the borehole observatory GONAF is located (photo: M. Bohnhoff, GFZ).

Link: https://media.gfz-potsdam.de/gfz/wv/pm/18/10809_Istanbul_M-Bohnhoff-GFZ.jpg


Darstellung der Nordanatolischen Verwerfungszone (CCBY 3.0: Bohnhoff et.al., Scientific Drilling, 5, 1-10, 2017, doi:10.5194/sd-5-1-2017)


Illustration of the North Anatolian fault zone (CCBY 3.0: Bohnhoff et.al., Scientific Drilling, 5, 1-10, 2017, doi:10.5194/sd-5-1-2017).

Link: https://media.gfz-potsdam.de/gfz/wv/pm/18/10810_ScientificDrilling-GONAF_Bohnhoff-et-al.jpg

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Earthquake Articles from Brightsurf:

Healthcare's earthquake: Lessons from COVID-19
Leaders and clinician researchers from Beth Israel Lahey Health propose using complexity science to identify strategies that healthcare organizations can use to respond better to the ongoing pandemic and to anticipate future challenges to healthcare delivery.

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.

Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.

Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.

Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.

Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.

Read More: Earthquake News and Earthquake Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.