How invading jumping genes are thwarted

November 01, 2018

Baltimore, MD--Since Carnegie Institution's Barbara McClintock received her Nobel Prize on her discovery of jumping genes in 1983, we have learned that almost half of our DNA is made up of jumping genes--called transposons. Given their ability of jumping around the genome in developing sperm and egg cells, their invasion triggers DNA damage and mutations. This often leads to animal sterility or even death, threatening species survival. The high abundance of jumping genes implies that organisms have survived millions, if not billions, of transposon invasions. However, little is known about where this adaptability comes from. Now, a team of Carnegie researchers has discovered that, upon jumping gene invasion, reproductive stem cells boost production of non-coding RNA elements (piRNA) that suppress their activity and activates a DNA repair process allowing for normal egg development. The results are published in the November 1, 2018, issue of Developmental Cell.

The researchers studied jumping genes in the fruit fly Drosophila melanogaster--a classic model to study jumping genes in developing sperm and egg cells. To set up a powerful system studying jumping gene adaptation, the researchers needed a tool to control their activity. It has been known for four decades that environmental temperature influences the severity of sterility in the fruit fly upon jumping gene invasion. At temperatures of 77 degrees F (25 degrees C) offspring have sterile ovaries, while at 64 degrees F (18 degrees C) offspring have fully developed and fertile ovaries.

"Because temperature had been widely known to affect sterility, we decided to quantify the rates of this jumping gene's activity at different temperatures. We discovered that the rate of jumping gene mobilization was seven times greater at 77 degrees F in ovarian stem cells, which means we can simply use temperature to control the invasion intensity from jumping genes," remarked Sungjin Moon, the first author of the paper.

The junior research group, led by Staff Associate, Zhao Zhang included Carnegie's Sungjin Moon, Madeline Cassani, Yu An Lin, Lu Wang, and Kun Dou. With this knowledge the team established the fly adult ovary as a powerful platform to uncover the underlying adaptation mechanism. They found that reproductive stem cells use a novel adaptive response to "rapidly tame" the invading elements by activating the so-called DNA damage checkpoint. This is a process that activates a pause in the cell cycle, before cell division, to repair damaged DNA. A checkpoint component, called Chk2, was found to be key. This pause in the repair process amplified the production of piRNA--those non-coding RNA elements that silence the jumping genes. They found that this pause period is necessary for adaptation and for permanently silencing the invading jumping genes, which allowed for normal egg production that could begin within four days.

"Jumping gene invasion triggers catastrophic genomic instability in all organisms," remarked Zhao Zhang. "They greatly reduce the viability or fertility of the invaded animals and can lead to a population crisis. We believe that the ability of reproductive stem cells to rapidly adapt and restore fertility in this manner allows species to resist such a population crash. This mechanism is a lynchpin to species survival."
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to