Nav: Home

Fishing for new leads in a rare melanoma

November 01, 2018

Zebrafish are an emerging power tool in cancer research. They can be engineered to light up when certain genes turn on -- capturing the moment when a cancer is initiated. Because they breed so quickly, they lend themselves to rapid, large-scale chemical screening studies, so can help identify tumor promoters and suppressors. Now, as a new study in Science demonstrates, zebrafish can also help scientists dissect the intricate molecular pathways that underlie many cancers, and could help guide treatment strategies.

Collaborators at Boston Children's Hospital and the University of California San Francisco (UCSF) focused on mucosal melanomas -- rare tumors found not on the skin, but in the linings of the respiratory tract, mouth, GI tract and genitourinary tract. Mucosal melanomas tend to come to light only when very advanced. Their biology is poorly understood, and they tend to lack the genetic mutations associated with skin melanomas. Thus, few patients benefit from targeted therapies. The five-year survival rate is only 33 percent.

That's where Leonard Zon, MD, and his colleagues at Boston Children's thought they could help. Zon's lab had already developed a zebrafish melanoma model that faithfully simulates human melanoma tumors and is easy to manipulate genetically. Could it shed new light on mucosal melanomas?

"Zebrafish offer the ability to test genetic hypotheses quite rapidly," says Julien Ablain, PhD, a fellow in the lab. "Genetic sequencing gives you a lot of information, but not a functional understanding of what the genetic alterations do. Our melanoma model allows us to ask these questions in large numbers of fish -- and make statistically significant observations."

Modeling human cancer genes in zebrafish

The Boston Children's team approached the lab of Iwei Yeh, MD, PhD at UCSF, which is known for having sequenced many different melanoma tumors. The lab indeed had a cohort of 43 patients with mucosal melanomas, as well as sequencing data.

Analyzing these data for point mutations and DNA deletions and duplications, the researchers saw some intriguing clues. The top alteration involved a gene called SPRED1, never before implicated in cancer. It was inactivated in 37 percent of mucosal melanomas, but only 5 percent of skin melanomas. The mucosal tumors were also more likely than skin melanomas to harbor alterations in a gene called KIT, a known oncogene.

Zon's team then took the genetic observations into their zebrafish. They injected the fish en masse as embryos, so the genetic changes found in human mucosal melanoma were recapitulated in every zebrafish melanin-producing cell. This allowed them to model the effects of all the combinations of genetic alterations that occurred together with SPRED1 loss in the 43 UCSF patients.

Mixing and matching

Knowing that cancers often arise from a one-two genetic hit -- activation of a tumor-promoting gene plus loss of a tumor suppressor gene -- the Zon lab created a system to mix and match mutations. They used one vector to introduce oncogenes known to be relevant to human mucosal melanomas (namely, KIT, BRAF and NRAS) into the zebrafish. Another vector used CRISPR technology to delete known tumor suppressors (namely, tp53, pten and cdkn2a). In all, they tested 15 to 20 combinations of oncogenes and tumor suppressors.

Within 1 to 4 months, all the combinations had been tested to see if melanomas develop in the fish. The tumors that arose resembled human mucosal melanomas, arising in non-skin locations including internal organs.

Zebrafish that also had SPRED1 deletions had more severe melanomas, indicating that SPRED1 is a previously unrecognized tumor suppressor. Loss of SPRED1 was especially damaging in fish with KIT mutations: their melanomas were even more severe.

Dissecting melanoma biology

The team then switched from zebrafish to human mucosal melanoma cell lines to delve into the cancer's biology and to understand SPRED1's role and its interplay with KIT.

When Ablain and colleagues inactivated SPRED1, the melanoma cells proliferated faster. The reverse was also true. "If you overexpress SPRED1 in a KIT-driven zebrafish melanoma model, you delay melanomas," says Ablain. "That confirms that SPRED1 acts as a tumor suppressor."

Loss of SPRED1 increased the activity of a cellular pathway called MAPK, known to be associated with skin melanomas -- especially in tumors driven by KIT, which is part of the same pathway.

"Before, it was unclear whether the mucosal subtype of melanomas was driven by MAPK activity," says Ablain. "Our data suggest that they are, even though the genetic alterations are different."

Treatment implications?

The experiments also showed that when SPRED1 is lost, tumors become resistant to compounds that inhibit KIT. This suggests that patients with SPRED1 deletions would not benefit from existing KIT inhibitors -- but could potentially benefit from other drugs that inhibit the MAPK pathway downstream of KIT, such as MEK inhibitors. To test that prediction, the researchers plan to collaborate with DFCI to look at past clinical trials involving patients with mucosal melanoma to see if they had SPRED1 deletions and whether they benefited from KIT inhibitors.

Zon's lab also plans to look for SPRED1 in other kinds of tumors. Currently, SPRED1 isn't part of the panel of cancer-related genes often used to test patients, notes Ablain.

"For targeted therapies, you really need to understand the molecular mechanism," he says. "That is the first thing this paper is going to change."

"This paper establishes the zebrafish as an extremely quick model to study the many genes mutated and regulated in human cancer," says Zon, who is Director of the Stem Cell Research Program at Boston Children's Hospital and a senior physician with the Dana-Farber/Boston Children's Cancer and Blood Disorders Center. "In the future, patients could have their specific mutations modeled in zebrafish to guide decisions about their treatment."
-end-
Ablain and Mengshu Xu of UCSF were co-first authors on the paper. Zon and Iwei Yeh of UCSF were co-senior authors. The study was funded by the Melanoma Research Foundation, the Dermatology Foundation, the Melanoma Research Alliance, the Ellison Foundation, the Starr Foundation, the V Foundation, the Terry Patters Melanoma Foundation, and the National Cancer Institute (1R35CA220481, R01CA103846, K99CA201465, T32HL007627) and the Howard Hughes Medical Institute.

About Boston Children's Hospital

Boston Children's Hospital, the primary pediatric teaching affiliate of Harvard Medical School, is home to the world's largest research enterprise based at a pediatric medical center. Its discoveries have benefited both children and adults since 1869. Today, more than 3,000 scientists, including nine members of the National Academy of Sciences, 17 members of the National Academy of Medicine and 11 Howard Hughes Medical Investigators comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's is now a 415-bed comprehensive center for pediatric and adolescent health care. For more, visit our Vector and Thriving blogs and follow us on social media @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Boston Children's Hospital

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.