Army scientist seeks enhanced soldier systems through quantum research

November 01, 2018

Researchers at the U.S. Army Research Laboratory and the Joint Quantum Institute have created a pristine quantum light source that has the potential to lead to more secure communications and enhanced sensing capabilities for Soldiers.

ARL's Dr. Elizabeth Goldschmidt and JQI's Dr. Sunil Mittal and Prof. Mohammad Hafezi discuss this research in their paper titled "A topological source of quantum light" that is featured in the journal Nature.

Photons, the smallest amount of light that exists, are useful when it comes to carrying quantum information, which can be used for encryption to avoid interception from adversaries and enhanced sensitivity to the environment.

According to the researchers, one major part of the puzzle is that the photons must be undisturbed and as similar as possible in order for secure communications and Soldier systems to operate at the highest quality.

The research team has successfully developed a silicon chip that guides light around the device's edge, where it is protected from disruptions.

"Quantum sources, such as the one demonstrated in our research, are an enabling technology for integrated photonics-based scalable quantum networks and quantum information systems that require indistinguishable photons," Goldschmidt said

For this experiment, the researchers used silicon to convert infrared laser light into pairs of different-colored single photons.

"We injected light into a chip containing an array of miniscule silicon loops, and the light circulates around each loop thousands of times before moving on to a neighboring loop," Goldschmidt said.

According to Goldschmidt, the issue with the long journey the light takes, while necessary to get many pairs of single photons out of the silicon chip, is that small differences and defects in the material reduce photon quality.

"This is a problem for quantum information applications, as researchers need photons to be truly identical," Goldschmidt said.

To solve this issue, the team rearranged the loops in a way that allows the light to travel undisturbed around the edge of the chip, shielding the light from disruptions.

"This so-called topological protection uses the geometry of the system, rather than the local material properties, to guide the light," Goldschmidt said. "The relatively new field of topological photonics has focused to date on classical, rather than quantum, light fields and this work takes a step forward by demonstrating generation of quantum light in the topologically protected mode."

An added benefit to the silicon chip developed is that it works at room temperature unlike other quantum light sources that must be cooled down, making the process a whole lot simpler.

For Goldschmidt, this project opens up a new research chapter for her, and is one that she hopes includes similar collaborative opportunities.

"My research interests span many aspects of quantum optics, and this work has allowed me to learn more about the emerging field of topological photonics," Goldschmidt said. "I hope that this paper acts as a foundation for future work at the intersection of quantum optics and topological photonics and I am looking forward to continuing to collaborate with Professor Hafezi."

As far as next steps to turn this research into reality, the team has plans to improve this source by using waveguides with less unwanted absorption and will continue to study the quantum properties of their topological photonic system.
The U.S. Army Research Laboratory is part of the U.S. Army Research, Development and Engineering Command, which has the mission to ensure decisive overmatch for unified land operations to empower the Army, the joint warfighter and our nation. RDECOM is a major subordinate command of the U.S. Army Materiel Command.

U.S. Army Research Laboratory

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to