Nav: Home

A new material for regenerative medicine capable to control cell immune response

November 01, 2019

In this case, such an irritant is a regenerative material. According to scientists, the proposed solution is a simpler way to control the immune response compared to existing ones. The results were published in ACS Biomaterials Science & Engineering (IF: 4,511; Q1).

"Nowadays, researchers have only a few tools to regulate the immune response. You can work with proteins, but it is difficult. You can use compounds, capable of killing immune cells, but they are harmful to other cells.

We followed a different path and suggest using inhibitors placed directly in the material itself to recover damage." - Ksenia Stankevich, author of the article and engineer of the Laboratory for Plasma Hybrid Systems, says.

Scaffolds are 3D frames of thin polymer fibers interwoven with each other in different directions. In regenerative medicine, they are used in case of injuries of bone and soft tissues. They are placed in the damaged area and new tissue regenerates through the scaffold and fills the injured area.

TPU and the University of Montana used a biodegradable polycaprolactone polymer for their scaffolds. It makes products more flexible and affordable in comparison with alternatives. The scaffolds made of polycaprolactone were created by the method of electrospinning, producing thinnest fibers from a polymer solution under the electric field. At the stage of obtaining the scaffolds, we introduce inhibitors into the polymer structure. These are two compounds - IQ-1 (full name - 11H-indeno [1,2-b] quinoxaline-11-on oxime) and IQ-1E (full name - 11H-indeno [1,2-b] quinoxaline-11- on O-(O-ethylcarboxymethyl) oxime).

"Inhibitors suppress or slow down physiological and physicochemical processes. They affect enzymes. To do this, the enzyme and the inhibitor must fit together like a lock and a key. One of the groups of enzymes responsible for the inflammatory process is the JNK group" - Ksenia Stankevich explains. "Earlier we obtained new promising inhibitors, demonstrating high biological activity in inhibiting the functioning of these enzymes, such as IQ-1 and IQ-1E. Our scaffolds differ in the use of specific inhibitors and also in the fact that we can release them from the material gradually, having a prolonged effect. This is mainly due to the gradual natural degradation of the polymer. Additionally, it degrades to biocompatible 6-hydroxycaproic acid, which is recycled by human body.

Immune response of a cell is a cascade of biochemical processes. In this case, the JNK enzymes are links in the chain. Inhibitors bind to enzymes and block their work. Thus, suppressing one link, we turn off the entire subsequent reaction chain.

"In this article, we present the research results on immune cells, isolated from human blood and cell lines. In the future, we will look for opportunities for in vivo research.

Eventually, our scaffolds could be used to recover damages of soft tissues and blood vessels. The polycaprolactone has all suitable mechanical properties. For instance, it can reduce the negative consequences after a heart attack and stroke, the researcher says.

Scaffolds from various materials are already being implemented into medical practice in developed countries, but it is too early to talk about their widespread application. However, it is only a matter of time, that is why scientists continue searching for the most effective materials and biologically active compounds. "
-end-
The present work is a result of the collaboration of several TPU research teams headed by Associate Prof. Sergey Tverdokhlebov, the Weinberg Research Center, Prof. Andrey Khlebnikov and Prof. Victor Filimonov, the Kizhner Research Center, and Prof. Mark Quinn, and Igor A. Schepetkin, Senior Research Associate at the Department of Microbiology and Immunology, the University of Montana.

The studies were conducted as the part of Ksenia Stankevich internship under the Fulbright Program and financially supported by the Russian Science Foundation project (No. 17-15-01111) and is a development of the RSF project No. 16-13-10239 - Development and Modeling of Hybrid Biodegradable Scaffolds with Predicted Physicochemical and Immunomodulating Properties for Tissue-Engineering Constructions

Tomsk Polytechnic University

Related Immune Response Articles:

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.
How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.
Unveiling how lymph nodes regulate immune response
The Hippo pathway keeps lymph nodes' development healthy. If impaired, lymph nodes become full of fat cells or fibrosis develops.
Early immune response may improve cancer immunotherapies
Researchers report a new mechanism for detecting foreign material during early immune responses.
Researchers decode the immune response to Ebola vaccine
The vaccine rVSV-EBOV is currently used in the fight against Ebola virus.
Immune response depends on mathematics of narrow escapes
The way immune cells pick friends from foes can be described by a classic maths puzzle known as the 'narrow escape problem'.
Signature of an ineffective immune response to cancer revealed
Our immune system is programmed to destroy cancer cells. Sometimes it has trouble slowing disease progression because it doesn't act quickly or strongly enough.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Having stressed out ancestors improves immune response to stress
Having ancestors who were frequently exposed to stressors can improve one's own immune response to stressors, according to Penn State researchers.
Researchers discovered new immune response regulators
The research groups of Academy Professor Riitta Lahesmaa and Research Director Laura Elo from Turku Centre for Biotechnology have discovered new proteins that regulate T cells in the human immune system.
More Immune Response News and Immune Response Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.