New printer creates extremely realistic colorful holograms

November 01, 2019

WASHINGTON -- Researchers have developed a new printer that produces digital 3D holograms with an unprecedented level of detail and realistic color. The new printer could be used to make high-resolution color recreations of objects or scenes for museum displays, architectural models, fine art or advertisements that do not require glasses or special viewing aids.

"Our 15-year research project aimed to build a hologram printer with all the advantages of previous technologies while eliminating known drawbacks such as expensive lasers, slow printing speed, limited field of view and unsaturated colors," said research team leader Yves Gentet from Ultimate Holography in France. "We accomplished this by creating the CHIMERA printer, which uses low-cost commercial lasers and high-speed printing to produce holograms with high-quality color that spans a large dynamic range."

In The Optical Society (OSA) journal Applied Optics, the researchers describe the new printer, which creates holograms with wide fields of view and full parallax on a special photographic material they designed. Full parallax holograms reconstruct an object so that it is viewable in all directions, in this case with a field of view spanning 120 degrees.

The printer can create holograms from 3D computer generated models or from scans acquired with a dedicated scanner developed by the researchers. The high-quality holograms can even be used as masters to produce holographic copies.

Building a better printer

When developing the new hologram printer, the researchers carefully studied two previously developed holographic printer technologies to understand their advantages and drawbacks.

"The companies involved in developing the first two generations of printers eventually faced technical limitations and closed," said Gentet. "Our small, self-funded group found that it was key to develop a highly sensitive photomaterial with a very fine grain rather than use a commercially available rigid material like previous systems."

The CHIMERA printer uses red, green and blue low-power commercially available continuous wave lasers with shutters that adjust the exposure for each laser in a matter of milliseconds. The researchers also created a special anti-vibrating mechanical system to keep the holographic plate from moving during the recording.

Holograms are created by recording small holographic elements known as hogels, one after another using three spatial light modulators and a custom designed full-color optical printing head that enables the 120-degree parallax. After printing, the holograms are developed in chemical baths and sealed for protection.

The hogel size can be toggled between 250 and 500 microns and the printing rate adjusted from 1 to 50 hertz (Hz). For example, if a hogel size of 250 microns is used, the maximum printing speed is 50 Hz. At this speed it would take 11 hours to print a hologram measuring 30 by 40 centimeters, about half of the time it would take using previous systems based on pulsed lasers.

High brightness and clarity

The researchers used the new technology to print holograms that measured up to 60 by 80 centimeters showing various color objects including toys, a butterfly and a museum object.

"The new system offers a much wider field of view, higher resolution and noticeably better color rendition and dynamic range than previous systems," said Gentet. "The full-color holographic material we developed provides improved brightness and clarity while the low-power, continuous wave lasers make the system easy to use."

The researchers say that as technology improves, especially 3D software, it may be possible to expand their hologram printing approach to medical or other advanced applications.
-end-
Paper: Y. Gentet, P. Gentet, "CHIMERA, a new holoprinter technology combining low-power continuous lasers and fast printing," Applied Optics, 58, 34, G226-G230 (2019). DOI: https://doi.org/10.1364/AO.58.00G226

About Applied Optics

Applied Optics publishes in-depth peer-reviewed content about applications-centered research in optics. These articles cover research in optical technology, photonics, lasers, information processing, sensing and environmental optics. Applied Optics is published three times per month by The Optical Society and overseen by Editor-in-Chief Ronald Driggers, University of Central Florida, USA. For more information, visit OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact

mediarelations@osa.org

The Optical Society

Related Holograms Articles from Brightsurf:

Scientists use holographic imaging to detect viruses and antibodies
A team of scientists has developed a method using holographic imaging to detect both viruses and antibodies.

True holographic movie is within grasp
Holographic movies, like the one R2D2 projected of Princess Leia in the Star Wars: A New Hope, have long been the province of science fiction, but for most of us, the extent of our experience with holograms may be the dime-sized stamps on our passports and credit cards.

Study demonstrates feasibility of hologram technology in liver tumor ablation
Data from one of the first clinical uses of augmented reality guidance with electromagnetically tracked tools shows that the technology may help doctors quickly, safely, and accurately deliver targeted liver cancer treatments, according to a research abstract presented during a virtual session of the Society of Interventional Radiology's 2020 Annual Scientific Meeting on June 14.

Lightning fast algorithms can lighten the load of 3D hologram generation
Tokyo, Japan - Researchers from Tokyo Metropolitan University have developed a new way of calculating simple holograms for heads-up displays (HUDs) and near-eye displays (NEDs).

Black holes? They are like a hologram
Spherical, smooth and simple according to the theory of relativity, or extremely complex and full of information as, according to quantum laws, Stephen Hawking used to say?

Using holograms helps in studying the quality of composite materials
Composite materials have a complicated structure and specified mechanical or physical properties.

As seen in movies, new meta-hologram can be used as a communication tool
Junsuk Rho and his research team developed a multiplexed meta-hologram device operating at visible light.

New printer creates extremely realistic colorful holograms
Researchers have developed a new printer that produces digital 3D holograms with an unprecedented level of detail and realistic color.

Ultra-thin optical elements directly measure polarization
For the first time, researchers have used ultra-thin layers of 2D structures known as metasurfaces to create holograms that can measure the polarization of light.

3D holograms bringing astronomy to life
Scientists unravelling the mysteries of star cluster formation have taken inspiration from a 19th century magic trick, to help explain their work to the public.

Read More: Holograms News and Holograms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.