Researchers discover mechanism that allows SINEUPs to amplify protein production

November 01, 2020

Scientists from an international group led by the RIKEN Center for Integrative Medical Sciences and Yokohama City University have discovered that a pair of proteins play a key role in allowing an important type of functional non-coding RNA, known as SINEUPs, to act to promote their target messenger RNA.SINEUPs are a recently discovered type of RNA that work specifically to amplify the production of proteins by messenger RNAs, and hence could be important for developing therapeutics for diseases where a certain protein is insufficiently synthesized.

While it was once believed that DNA was simply transcribed into RNA which was then translated into proteins, it is now known that RNA plays a more complex role. While nearly all DNA is transcribed into RNA, it turns out that only 30% of RNA is translated into proteins. The remaining 70% play roles such as enhancing gene expression, epigenetic regulation and--in the case of SINEUPs--up-regulating the production of proteins by target RNA.

The current research, published in Nucleic Acids Research, looks at a certain type of non-coding RNA, known as SINEUPs. These are essentially "genetic parasites" that have incorporated themselves as repeating elements within the genome. Though it is understood that they function to amplify the activity of the messenger RNAs that they are associated with, the mechanism behind this activity remained a mystery.

According to Hazuki Takahashi of the RIKEN Center for Integrative Medical Sciences, one of the corresponding authors of the paper, "We wanted to figure out the mechanism for the action of SINEUPs. Understanding how these RNAs work would be a tremendous breakthrough, because there are a number of diseases caused by a failure of genes to create sufficient quantities of a certain protein, and knowing how SINEUPs function could provide us with a way to remedy this."

The group did have clues from their previous research. They had noted that the SINEUPs only affected the action of their target messenger RNA when they had been transported, together with the messenger RNA, out of the cell nucleus and into the cytosol where the protein production takes place.

Through a series of experiments involving both natural SINEUPs and artificial SINEUPs fitted with a fluorescent protein to allow the team to examine their movements, they discovered that a pair of RNA binding proteins, called PTBP1 and HNRNPK, interact with the SINEUPs both to allow their transport and to make it possible for them to act upon the messenger RNA. These two proteins are quite interesting as they have been found to work together in a variety of biological functions such as maintaining the pluripotency of cells. They are also biologically very important, as it has been shown that knocking out the HNRNPK gene in mice is lethal embryonically.

According to Piero Carninci of the RIKEN Center for Integrative Medical Sciences, the leader of the research group, "We are very pleased to have discovered the role of these binding proteins in the activities of SINEUPs. Because of the ability of SINEUPs specifically to modulate the translation of targeted mRNAs as needed, they are ideal for future therapies in humans where increasing the level of a specific protein could have a therapeutic effect. There are hundreds of diseases that would benefit from SINEUPs treatments, caused by deficiency of one functional copy of a gene: these diseases are known with the general terms of haploinsufficiencies. In addition, SINEUPs have potential to enhance currently limited antibody drug production. Understanding the mechanism of SINEUPs and other functional long non-coding RNAs mechanism is a very important first step for future applications of these RNAs for improving human health."
-end-


RIKEN

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.