Boosting the capacity of supercapacitors

November 01, 2020

A porous organic material created at KAUST could significantly improve energy storage and delivery by supercapacitors, which are devices that are able to deliver quick and powerful bursts of energy.

Supercapacitors use technology that is significantly different from the reversible chemical reactions used in rechargeable batteries. They store electrical energy by building up a separation of positive and electric charge and this ability enables them to supply quick bursts of energy needed, for example, to power the acceleration of electric cars, or open emergency doors in aircraft. They have a weakness, however, in the relatively low quantity of energy that they can store, a property known as their energy density.

The KAUST research team found a way to increase the energy density using materials known as covalent organic frameworks (COFs). These are crystalline porous polymers formed from organic building blocks held together by strong "covalent" bonds--the type that holds atoms together within molecules.

The reason for the previously low performance of COFs, the team found, is related to their low conductivity. They were able to overcome this limitation by exploring modified structures, which allowed electrons to become "delocalized," meaning that they were able to move widely throughout the molecules.

Furthermore, including carefully selected molecular functional groups also assisted the chemical changes required for increased energy storage performance.

The researchers designed layered two-dimensional COFs to effectively exploit multiple charge storage mechanisms in a single material. In so doing, they were able to significantly increase the charge storage capacity of the COF.

"The storage ability of our new material surpasses all previously reported COFs, and its capacitance is competitive with the best-known supercapacitor materials," explains Sharath Kandambeth, the postdoc who is first author of the study.

"The physical porous structure of the COF also facilitates and promotes the transport and storage of ions that carry electric charge," Kandambeth adds.

Supercapacitors have negative and positive electrodes separated by a material that charged particles can move through. The specific category of compounds developed by the KAUST team, known as Hex-Aza COFs, performed well when used as the negative electrodes of high-performance supercapacitors. When combined with another material as the positive electrode, such as RuO2, they resulted in an asymmetric supercapacitor device with a wide voltage range. In addition to higher energy density the electrodes also allow the supercapacitors to deliver energy for longer, which should widen the range of suitable applications.

"We are now trying to combine our Hex-Aza COF materials with relatively cheaper metal oxide positive electrodes to create new supercapacitors that we hope to move toward commercialization," says Mohamed Eddaoudi, leader of the research team.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Electrodes Articles from Brightsurf:

Performance test for neural interfaces
Freiburg researchers develop guidelines to standardize analysis of electrodes.

The perfect angle for e-skin energy storage
Researchers at DGIST have found an inexpensive way to fabricate tiny energy storage devices that can effectively power flexible and wearable skin sensors along with other electronic devices, paving the way towards remote medical monitoring & diagnoses and wearable devices.

Vacancy dynamics on CO-covered Pt(111) electrodes
USTC reported in situ video-STM observations of additional point defects in the presence of this dynamic CO adlayer.

Using tiny electrodes to measure electrical activity in bacteria
Scientists at Laboratory of Organic Electronics, Linköping University, have developed an organic electrochemical transistor that they can use to measure and study in fine detail a phenomenon known as extracellular electron transfer in which bacteria release electrons.

Flow-through electrodes make hydrogen 50 times faster
Duke chemists tested three new materials as a porous, flow-through electrode to make hydrogen from electrolysis.

Novel electric impulses relieve the pain
Chronic pain can be reduced by stimulating the vagus nerve in the ear with electrodes.

Visualization of functional components to characterize optimal composite electrodes
Researchers have developed a visualization method that will determine the distribution of components in battery electrodes using atomic force microscopy.

Electrolysis: Chemists have discovered how to produce better electrodes
Another step forward for renewable energies: The production of green hydrogen could be even more efficient in the future.

KIST develops large-scale stretchable and transparent electrodes
A Korean research team has developed a large-scale stretchable and transparent electrode for the stretchable display.

Key progress on the MRI compatible DBS electrodes and simultaneous DBS-fMRI
Recently, collaboration between Dr. Duan Xiaojie's group (Department of Biomedical Engineering, College of Engineering, Peking University) and Dr.

Read More: Electrodes News and Electrodes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.