Sensor uses DNA to detect presence of lead, a dangerous contaminant

November 02, 2000

CHAMPAIGN, Ill. -- Lead is a common environmental contaminant that can cause a number of health problems, particularly in children. Current techniques for lead detection require sophisticated equipment or complicated sample treatment. Now, researchers at the University of Illinois have developed a simple and inexpensive method that permits real-time, on-site detection of lead ions.

"A unique feature of our lead sensors is that they consist of small pieces of DNA, the same basic building block of our genes," said Yi Lu, a UI professor of chemistry. DNA is a well-known genetic material with different combinations of "code" or sequences that determine individual characteristics such as eye color, hair color and height.

"This represents a new class of simple and environmentally safe sensors and is the first example of a catalytic DNA-based biosensor for metal ions," Lu said. "It combines the high metal ion selectivity of catalytic DNA with the high sensitivity of fluorescence detection."

Because DNA is stable, cost-effective and easily adaptable to optical fiber and chip technology, the catalytic DNA system is an ideal candidate for real-time, remote sensing of lead in applications such as environmental monitoring, clinical toxicology and industrial process monitoring.

To search for the unique sequence of DNA that could distinguish lead from other metal ions, Lu and graduate student Jing Li used a method called in vitro selection. The selection process is capable of sampling a very large pool of DNA sequences (up to 1000 trillion molecules), amplifying the desired sequences by the polymerase chain reaction and introducing mutations to improve performance.

Using in vitro selection, Lu and Li found several DNA sequences that were especially responsive to the presence of lead ions. To enhance the sensitivity of the sensor, the researchers attached a fluorescent tag to a specific DNA sequence.

While most DNA is double stranded, the catalytic DNA Lu and Li selected has a single strand that can wrap around like a protein. In that single strand, the researchers fashion a specific binding site - a kind of pocket that can only accommodate the metal ion of choice.

"The principles demonstrated in this work can also be used to obtain DNA biosensors for other metal ions that are toxic (such as mercury and cadmium) or beneficial (such as calcium and potassium) to humans," Lu said. "At the same time, we can offer insight into both the sequence and structure of DNA that is responsible for the metal specificity."

Lu and Li described their catalytic DNA sensor in the Oct. 25 issue of the Journal of the American Chemical Society. Funding was provided by the National Institutes of Health. The researchers have applied for a patent.
-end-


University of Illinois at Urbana-Champaign

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.