UCSB physicists identify room temperature quantum bits in widely used semiconductor

November 02, 2011

Santa Barbara, Calif. -- A discovery by physicists at UC Santa Barbara may earn silicon carbide -- a semiconductor commonly used by the electronics industry -- a role at the center of a new generation of information technologies designed to exploit quantum physics for tasks such as ultrafast computing and nanoscale sensing.

The research team discovered that silicon carbide contains crystal imperfections that can be controlled at a quantum mechanical level. The finding is published this week in the journal Nature.

The research group of David Awschalom, senior author, made the finding. Awschalom is director of UCSB's Center for Spintronics & Quantum Computation, professor of physics, electrical and computer engineering, and the Peter J. Clarke Director of the California NanoSystems Institute.

In conventional semiconductor-based electronic devices, crystal defects are often deemed undesirable because of their tendency to immobilize electrons by "trapping" them at a particular crystal location. However, the UCSB team discovered that electrons that become trapped by certain imperfections in silicon carbide do so in a way that allows their quantum states to be initialized, precisely manipulated, and measured using a combination of light and microwave radiation. This means that each of these defects meets the requirements for use as a quantum bit, or "qubit," which is often described as the quantum mechanical analog of a transistor, since it is the basic unit of a quantum computer.

"We are looking for the beauty and utility in imperfection, rather than struggling to bring about perfect order," said Awschalom, "and to use these defects as the basis for a future quantum technology."

Most crystal imperfections do not possess these properties, which are intimately tied to the atomic structure of a defect and the electronic characteristics of its semiconductor host, explained Awschalom. In fact, before this research, the only system known to possess these same characteristics was a flaw in diamond known as the nitrogen-vacancy center.

The diamond nitrogen-vacancy center is renowned for its ability to function as a qubit at room temperature, while many other quantum states of matter require an extremely cold temperature, near absolute zero. However, this center exists in a material that is difficult to grow and challenging to manufacture into integrated circuits.

In contrast, high-quality crystals of silicon carbide, multiple inches in diameter, are commonly produced for commercial purposes. They can be readily fashioned into a multitude of intricate electronic, optoelectronic, and electromechanical devices. In addition, the defects studied by Awschalom and his group are addressed using infrared light that is close in energy to the light used widely throughout modern telecommunications networks. And while several distinct defect types were studied at a range of temperatures, two of them were capable of room temperature operation, just like the diamond nitrogen-vacancy center.

The combination of these features makes silicon carbide, with its defects, an attractive candidate for future work seeking to integrate quantum mechanical objects with sophisticated electronic and optical circuitry, according to the researchers. This research fits within a wider effort at UCSB to engineer quantum devices by fostering collaboration between the fields of materials science and quantum physics.

While defects in silicon carbide may offer many technologically attractive qualities, an immense number of defects in other semiconductors are still left to be explored.

"Our dream is to make quantum mechanics fully engineerable," said William Koehl, lead author and a graduate student in the Awschalom lab. "Much like a civil engineer is able to design a bridge based on factors such as load capacity and length span, we'd like to see a day when there are quantum engineers who can design a quantum electronic device based on specifications such as degree of quantum entanglement and quality of interaction with the surrounding environment."
-end-


University of California - Santa Barbara

Related Quantum Physics Articles from Brightsurf:

Know when to unfold 'em: Applying particle physics methods to quantum computing
Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at Berkeley Lab has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

Quantum physics: Physicists successfully carry out controlled transport of stored light
A team of physicists at Mainz University has successfully transported light stored in a quantum memory over a distance of 1.2 millimeters.

New system detects faint communications signals using the principles of quantum physics
Researchers at the National Institute of Standards and Technology (NIST) have devised and demonstrated a system that could dramatically increase the performance of communications networks while enabling record-low error rates in detecting even the faintest of signals.

Quirky response to magnetism presents quantum physics mystery
In a new study just published and highlighted as an Editor's Suggestion in Physical Review Letters, scientists describe the quirky behavior of one such magnetic topological insulator.

Evidence of power: Phasing quantum annealers into experiments from nonequilibrium physics
Scientists at Tokyo Institute of Technology (Tokyo Tech) use commercially available quantum annealers, a type of quantum computer, to experimentally probe the validity of an important mechanism from nonequilibrium physics in open quantum systems.

Adapting ideas from quantum physics to calculate alternative interventions for infection and cancer
Published in Nature Physics, findings from a new study co-led by Cleveland Clinic and Case Western Reserve University teams show for the first time how ideas from quantum physics can help develop novel drug interventions for bacterial infections and cancer.

Quantum physics: Realization of an anomalous Floquet topological system
An international team led by physicists from the Ludwig-Maximilians Universitaet (LMU) in Munich realized a novel genuine time-dependent topological system with ultracold atoms in periodically-driven optical honeycomb lattices.

Quantum physics provides a way to hide ignorance
Students can hide their ignorance and answer questions correctly in an exam without their lack of knowledge being detected by teachers -- but only in the quantum world.

Quantum physics: Physicists develop a new theory for Bose-Einstein condensates
Bose-Einstein condensates are often described as the fifth state of matter: At extremely low temperatures, gas atoms behave like a single particle.

Attosecond physics: Quantum brakes in molecules
Physicists have measured the flight times of electrons emitted from a specific atom in a molecule upon excitation with laser light.

Read More: Quantum Physics News and Quantum Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.