A hormone ensures its future

November 02, 2011

Much of the body's chemistry is controlled by the brain - from blood pressure to appetite to food metabolism. In a study published recently in Developmental Cell, a team of scientists led by Dr. Gil Levkowitz of the Weizmann Institute has revealed the exact structure of one crucial brain area in which biochemical commands are passed from the brain cells to the bloodstream and from there to the body. In the process, they discovered a surprising new role for the 'hormone of love,' showing that it helps to direct the development of this brain structure.

The area in question, the neuro-hypophysis, is an interface between nerve fibers and blood vessels located at the base of the brain. Here, some of the major brain-body interactions take place: Hormones released from nerves into the blood vessels regulate a series of vital body processes, including the balance of fluids and uterine contractions in childbirth.

Although the neurohypophysis has been studied for more than a century, the scientists in the Weizmann Institute-led study developed new genetic tools that enabled them to examine the exact three-dimensional arrangement of this brain structure and clarify the cellular and molecular processes leading to its formation. Since the human neurohypophysis is exceedingly complex, the scientists performed the research on live embryos of zebrafish. These fully transparent embryos offer a unique model for studying the vertebrate brain, lending themselves to genetic manipulation with relative ease and enabling researchers to observe the actual formation of a neurohypophysis under a microscope.

The study revealed a surprising new function for the hormonal messenger oxytocin, dubbed the 'hormone of love' because, in addition to controlling appetite and such female reproductive behaviors as breastfeeding, it is also involved in mother-child and mate bonding. The scientists showed that oxytocin, one of the two major hormones secreted in the adult neurohypophysis, is involved in the development of this brain area already in the embryo. At this stage, the oxytocin governs the formation of new blood vessels. 'The messenger helps to build the road for transmitting its own future messages,' says Levkowitz. Developmental Cell highlighted the study's findings in a preview headlined, 'The Hormone of Love Attracts a Partner for Life.'

These findings provide an important advance in basic research because they shed light on fundamental brain processes, but in the future they might also be relevant to the treatment of disease. Since the neurohypophysis is one of only a few portions of the brain able to regenerate after injury, an understanding of how it is formed may one day help achieve such regeneration in other parts of the central nervous system.
-end-
The research was conducted in Levkowitz's lab in the Molecular Cell Biology Department by Ph.D. student Amos Gutnick together with Dr. Janna Blechman. The Weizmann scientists worked in collaboration with Dr. Jan Kaslin of Monash University, Australia; Drs. Lukas Herwig, Heinz-Georg Belting and Markus Affolter of the University of Basel, Switzerland; and Dr. Joshua L. Bonkowsky of the University of Utah, United States.

Dr. Gil Levkowitz's research is supported by the Dekker Foundation; the Kirk Center for Childhood Cancer and Immunological Disorders; and the Irwin Green Alzheimer's Research Fund. Dr. Levkowitz is the incumbent of the Tauro Career Development Chair in Biomedical Research.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Weizmann Institute of Science

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.