Two photons strongly coupled by glass fiber

November 02, 2014

Two photons in free space do not interact. Light waves can pass through each other without having any influence on each other at all. For many applications in quantum technology, however, interaction between photons is crucial. It is an indispensable prerequisite for transmitting information through tap-proof quantum channels or for building optical logic gates. At the Vienna University of Technology (TU Wien), scientists have now succeeded in establishing a strong interaction between two single photons. This opens up completely new possibilities for quantum optics. The experimental results have now been published in the journal "Nature Photonics".

Interaction Usually Requires Bright Light

"In order to have light interact with light, people have been using so-called nonlinear media", says Professor Arno Rauschenbeutel (Institute for Atomic and Subatomic Physics, TU Wien). The light has an effect on the properties of these materials, and the material in turn influences the light, which leads to an indirect coupling between photons. This technique, however, can only be used at strong light intensities, when countless photons are involved.

At TU Wien, a system was built which creates a strong interaction between only two photons. This interaction is so strong that the phase of the photons is changed by 180 degrees. "It is like a pendulum, which should actually swing to the left, but due to coupling with a second pendulum, it swings to the right. There cannot be a more extreme change in the pendulum's oscillation", says Rauschenbeutel. "We achieve the strongest possible interaction with the smallest possible intensity of light."

A Photon in a Bottle

To make this possible, the photon has to be sent on an unlikely journey. An ultra-thin glass fibre is coupled to a tiny bottle-like light resonator so that light can partly enter the resonator, move in circles and return to the glass fibre. This detour through the resonator leads to the phase of the photon being inverted: a wave crest appears where a wave trough would have been expected.

When, however, a single rubidium atom is coupled to the resonator, the system is changed dramatically. Due to the presence of the atom, hardly any light enters the resonator anymore and the oscillation phase of the photon cannot be inverted.

Two Photons at Once

Things change when two photons arrive at the same time. "The atom is an absorber which can be saturated", says Arno Rauschenbeutel. "A photon is absorbed by the atom for a short while and then released into the resonator. During that time, it cannot absorb any other photons. If two photons arrive simultaneously, only one can be absorbed, while the other can still be phase shifted."

From a quantum mechanical point of view, there is no difference between the two photons. They can only be understood as a joint wave-like object, which is located in the resonator and in the glass fibre at the same time. The photons are indistinguishable. No one can tell which of them is being absorbed and which one has passed. When both hit the resonator at the same time, both of them together experience a phase shift by 180 degrees. Two interacting photons arriving simultaneously show a completely different behaviour than single photons.

The Building Blocks of Future Quantum Data-Highways?

"That way, a maximally entangled photon state can be created", says Arno Rauschenbeutel. "Such states are required in all fields of quantum optics - in quantum teleportation, or for light-transistors which could potentially be used for quantum computing."

A big advantage of the new system is that it is based on glass fibre technology, which is already being used for online communication anyway. Nano glass fibres and bottle-resonators are perfectly compatible with existing technologies. The targeted creation of a strong photon-photon-interaction is an important step towards a worldwide quantum information network for the tap-proof transmission of data.
-end-
Further information:

Prof. Arno Rauschenbeutel
Insitute for Atomic and Subatomic Physics
Vienna Center for Quantum Science and Technology
TU Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.atDr. Jürgen Volz
Insitute for Atomic and Subatomic Physics
Vienna Center for Quantum Science and Technology
TU Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141739
juergen.volz@tuwien.ac.at

Vienna University of Technology

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.