Planting in clumps boosts wetland restoration success

November 02, 2015

DURHAM, N.C. -- When restoring coastal wetlands, it's long been common practice to leave space between new plants to prevent overcrowding and reduce competition for nutrients and sunlight

It turns out, that's likely all wrong.

A new Duke University-led study, conducted to restore degraded salt marshes in Florida and the Netherlands, has found that clumping newly planted marsh grasses next to each other, with little or no space in between, can spur positive interactions between the plants and boost growth and survival by 107 percent, on average, by the end of one growing season.

In some test plots, plant density and vegetative cover increased by as much as 300 percent by season's end.

"This is a really small design change that can yield greatly improved results, without adding to restoration costs or time," said Brian R. Silliman, Rachel Carson Associate Professor of Marine Conservation Biology at Duke. "It's essentially free success -- higher yields at no added expense."

Silliman and his colleagues published the new peer-reviewed research today (Nov. 2) in the Proceedings of the National Academy of Sciences.

Their finding, which is applicable to a wide array of coastal restoration efforts worldwide, upends a 40-year-old theory borrowed from forestry that new plants -- called outplants by restoration ecologists -- need to be spaced well apart from each other to reduce competition and generate the highest growth rates.

"In a low-stress field or forest, that makes sense. But in the tough, volatile environment of re-developing coastal wetlands, it's a different story," Silliman said.

Like an overprotected child, a plant that is spaced too far from other plants and species in a restored wetland will experience not only fewer negative interactions but also fewer positive ones, which often outweigh the negatives, Silliman said. Left to fend on their own, small outplants will have more trouble resisting erosion, overcoming low oxygen levels in the soil, or surviving infestations and overgrazing by marsh herbivores, among other common threats.

"The bottom-line message is: A coastal wetland plant that is planted close to its neighbors will grow better than a plant that isn't," Silliman said. "Our findings clearly demonstrate that planting closely does not spur negative competition; on the contrary, it allows positive interactions to flourish, so plants can work together to survive."

Convincing others to adopt this new approach may be a challenge. A survey conducted by Silliman and his team as part of their new study found that 95 percent of restoration organizations in the United States still adhere to the old forestry-based practice of dispersed planting. The old practice remains common in other countries, as well.

"In China, where coastal marshes have experienced massive die-offs recently from drought and overgrazing, people have tried unsuccessfully to restore them using the old paradigm that spaces out plants," said Qiang He, a postdoctoral associated in Silliman's lab. "It's possible that changing planting designs could greatly improve the success of salt marsh restoration there, as clumping could protect plants from salt stress and overgrazing."

"In the very near future, conservation will entail immense restoration projects on the scale of whole ecosystems, islands or cities. We won't just be restoring them - we'll be augmenting existing ecosystems and creating new ones to provide the services we need," Silliman said. "Increasing our yields and decreasing our costs to achieve these goals must be a high scientific priority. This study takes a big step in the right direction by showing how harnessing positive interactions can increase restoration success."
Funding for the study came from the National Science Foundation (#BIO-OCE 1056980) the Netherlands Royal Society of Arts and Sciences and the Edward Stolarz Foundation.

Silliman and He's co-authors were PhD student Elizabeth C. Schrack and masters students Rebecca Cope and Amanda Santoni, of Duke; T. van der Helde of Ramhoud University at Nijmegen and the University of Groningen; Johan van de Koppel of the Royal Netherlands Institute for Sea Research and the University of Groningen; and Ralph and Mike Jacobi of Boy Scout Troop 138 in Tampa Bay, Fla., who planted and helped monitor some of the experimental salt marsh test plots used in the study.

CITATION: "Facilitation Shifts Paradigms and Can Amplify Coastal Restoration Efforts," Brian R. Silliman, Elizabeth C. Schrack, Qiang He, Rebecca Cope, Amanda Santoni, T. van der Heide, Ralph Jacobi, Mike Jacobi, Johan van de Koppel; Nov. 2, 2015, Proceedings of the National Academy of Sciences; DOI: 10.1073/pnas.1515297112

Duke University

Related Plants Articles from Brightsurf:

When plants attack: parasitic plants use ethylene as a host invasion signal
Researchers from Nara Institute of Science and Technology have found that parasitic plants use the plant hormone ethylene as a signal to invade host plants.

210 scientists highlight state of plants and fungi in Plants, People, Planet special issue
The Special Issue, 'Protecting and sustainably using the world's plants and fungi', brings together the research - from 210 scientists across 42 countries - behind the 2020 State of the World's Plants and Fungi report, also released today by the Royal Botanic Gardens, Kew.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

How do plants forget?
The study now published in Nature Cell Biology reveals more information on the capacity of plants, identified as 'epigenetic memory,' which allows recording important information to, for example, remember prolonged cold in the winter to ensure they flower at the right time during the spring.

The revolt of the plants: The arctic melts when plants stop breathing
A joint research team from POSTECH and the University of Zurich identifies a physiologic mechanism in vegetation as cause for Artic warming.

How plants forget
New work published in Nature Cell Biology from an international team led by Dr.

Ordering in? Plants are way ahead of you
Dissolved carbon in soil can quench plants' ability to communicate with soil microbes, allowing plants to fine-tune their relationships with symbionts.

When good plants go bad
Conventional wisdom suggests that only introduced species can be considered invasive and that indigenous plant life cannot be classified as such because they belong within their native range.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Can plants tell us something about longevity?
The oldest living organism on Earth is a plant, Methuselah a bristlecone pine (Pinus longaeva) (pictured below) that is over 5,000 years old.

Read More: Plants News and Plants Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to